1. A transverse wave traveling on a string is described by the expression y(x,t) = 1 cm sin (1.3 x /m - 10 t / s), where m=meters, cm=centimeters, and s=seconds. What is the frequency, f, of this wave?

Α	20 Hz	F	1.6 Hz
В	1.3 Hz	G	1.59 Hz
С	10 Hz	H	20 Hz
D	628 Hz	I	0.314 Hz
E	12 Hz	J	314 Hz

KEY

$$\frac{10}{5}x = 2\pi f x$$

 $\Rightarrow f = \frac{10}{2\pi} \frac{1}{5} = 1.59 Hz$

2. For the wave in problem 1, what is the period, T, of the wave?

A	0.1 s	F	0.159 s
В	10 s	G	7.69 s
С	0.0318 s	Н	76.9 s
D	0.769 s	1)	0.628 s
E	31.4 s	J	1 s

$$T = \frac{1}{f} = \frac{2\pi}{10} s$$

$$\simeq \left[0.628 s\right]$$

3. For the wave in problem 1, what is the wavelength, λ , of the wave?

Α	1.3 m	F	3.2 mm
В	2.42 m	G	0.13 m
С	13 m	Н	13 mm
D	0.769 m		4.83 m
E	7.69 m	J	8.17 m

$$\frac{2\pi}{2} \times = \frac{1.3 \times 10^{-3}}{1.3}$$

$$\Rightarrow \lambda = 2\pi \frac{m}{1.3}$$

$$\approx 4.83 \text{ m}$$

4. For the wave in problem 1, what is the direction the wave is traveling?

Α	- x direction	F	- z direction
В	+x direction	G	it's not moving
С	up	Н	cannot be determined
D	+ y direction	I	- y direction
E	+ z direction	J	down

5. For the wave in problem 1, what is the transverse acceleration of the wave at time t=0 and position x=1m?

Α	0.26 m/s ²	F	0.1 m/s ²
В	- 10 m/s ²	G	9.87 m/s ²
С	100 m/s ²	H	98.7 m/s ²
D	- 3.14 m/s ²	I	0.0987m/s ²
Ε	3.14 m/s ²	J) - 0.963 m/s ²

$$\frac{\partial Y}{\partial t^2} = -\omega^2 A \sin(kx - \omega t)$$

that is the transverse acceleration of the 1m?

$$y = A \sin (kx - \omega t)$$

$$y' = A \sin (kx - \omega$$