1. A transverse wave traveling on a string is described by the expression $\mathrm{y}(\mathrm{x}, \mathrm{t})=1 \mathrm{~cm} \sin (1.3 \mathrm{x} / \mathrm{m}-10 \mathrm{t} / \mathrm{s})$, where $\mathrm{m}=$ meters, $\mathrm{cm}=$ centimeters, and $s=$ seconds . What is the frequency, f , of this wave?

A	20 Hz	F	1.6 Hz
B	1.3 Hz	G	1.59 Hz
C	10 Hz	H	20 Hz
D	628 Hz	I	0.314 Hz
E	12 Hz	J	314 Hz

2. For the wave in problem 1, what is the period, T , of the wave?

A	0.1 s	F	0.159 s
B	10 s	G	7.69 s
C	0.0318 s	H	76.9 s
D	0.769 s	I	0.628 s
E	31.4 s	J	1 s

3. For the wave in problem 1, what is the wavelength, λ, of the wave?

A	1.3 m	F	3.2 mm
B	2.42 m	G	0.13 m
C	13 m	H	13 mm
D	0.769 m	I	4.83 m
E	7.69 m	J	8.17 m

4. For the wave in problem 1, what is the direction the wave is traveling?

A	-x direction	F	- z direction
B	+x direction	G	it's not moving
C	up	H	cannot be determined
D	+y direction	I	- y direction
E	+z direction	J	down

5. For the wave in problem 1, what is the transverse acceleration of the wave at time $\mathrm{t}=0$ and position $\mathrm{x}=1 \mathrm{~m}$?

A	$0.26 \mathrm{~m} / \mathrm{s}^{2}$	F	$0.1 \mathrm{~m} / \mathrm{s}^{2}$
B	$-10 \mathrm{~m} / \mathrm{s}^{2}$	G	$9.87 \mathrm{~m} / \mathrm{s}^{2}$
C	$100 \mathrm{~m} / \mathrm{s}^{2}$	H	$98.7 \mathrm{~m} / \mathrm{s}^{2}$
D	$-3.14 \mathrm{~m} / \mathrm{s}^{2}$	I	$0.0987 \mathrm{~m} / \mathrm{s}^{2}$
E	$3.14 \mathrm{~m} / \mathrm{s}^{2}$	J	$-0.963 \mathrm{~m} / \mathrm{s}^{2}$

