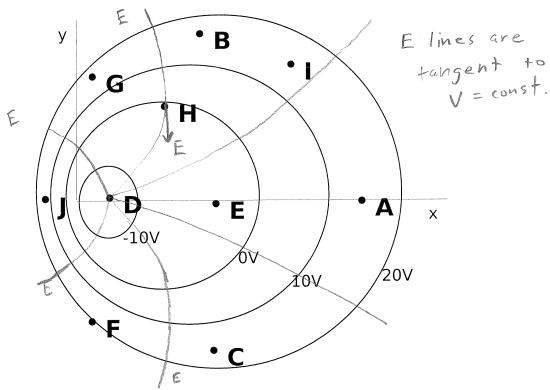
Physics 2306


______ Student ID _____

Check your (CRN) section number (- 2 points if not checked):

14291	8:00 - 8:50
14288	9:05 - 9:55
14296	10:10 - 11:00
14295	11:15 - 12:05

Students may also use their own two sided 8.5" x 11" formula sheet in addition to the formula sheet that is on the last page of this.

For problems 1-4. The figure below shows equipotential lines with the corresponding potentials labeled (-10V to 20V). The corresponding electric field vectors lie in the plane of the paper. You are to assume that the potential is varying smoothly in the x-y plane.

1. Out of all the labeled points, which point has the electric field with the largest magnitude.

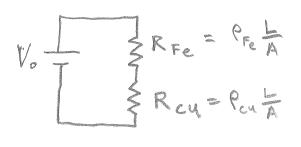
1	Α	l	F
2		7	G
3		8	Н
4	D	9	I
5		10	J)

2. Out of all the labeled points, which point has the electric field with the smallest magnitude.

	1	Α	6	F
	2	В	7	G
	3	С	8	Н
(4	D)	9	I
	5	E	10	J

Dis at a minimum
$$\frac{\Delta V}{\Delta X} = \frac{\Delta V}{\Delta X} = 0$$

3. If the equipotential lines with potentials 10V and 20V intersect the positive x-axis at positions that are 25mm apart, what is the magnitude of the electric field at the point labeled $\bf A$?

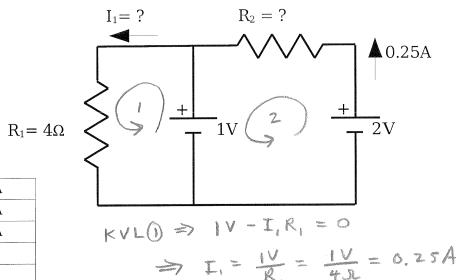

1	0.25 V/m	6	25 V/m
2	0.4 V/m	7	40 V/m
3	2.5 V/m	8	250 V/m
4	4 V/m	9	400 V/m
5	20 V/m	10	2000 V/m

E×	~	dissar-	$\frac{\Delta^{V}}{\Delta^{X}}$	100001: e ^{e0}	. 10	5 mm	ngggglei. neddinn		25	XIO-1	Mr. 1
	economic economic	(+	tov)	(10)	disystem. Assistan	-400			5.	1	100
and the second	y =	- 1	77 =	- 0		E.		(Em.)		400	<i>V</i> 11

4. What is the direction of the electric field at the point labeled \mathbf{H} ?

1	x direction	6	45° up from -x
2	-x direction	7	out of the paper
3	y direction	8	into the paper
4	-y direction	9	cannot be determined
5	45° up from +x	10	45° down from +x

5. A copper and an iron wire with the same length, L/2, and cross-sectional area, A, are joined in series to form one long wire of total length L. The resistivity of the copper is $1.6x10^{-8}~\Omega m$, and the resistivity of the iron is $9.6x10^{-8}~\Omega m$. If the potential difference of $V_0=2.8V$ is imposed across the opposite ends, then the potential difference between the ends of the copper is:


1	0.2 V	6	1 V
2	0.4 V	7	1.2 V
3	0.6 V	8	1.4 V
4	0.65 V	9	2 V
5	0.7 V	10	2.8 V

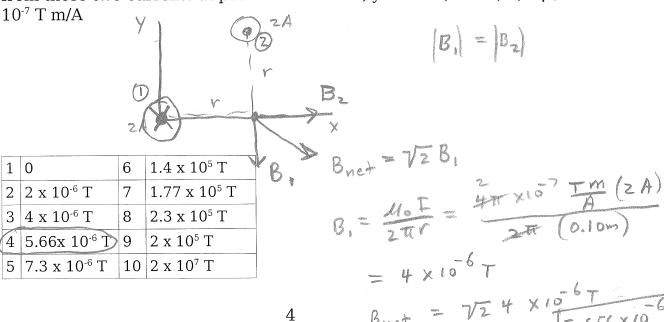
$$V_{eq} = I R_{eq} = \left(\frac{V_o}{R_{E} + R_{eq}}\right) R_{eq}$$

$$= V_o \frac{R_{eq}}{R_{E} + R_{eq}} = V_o \frac{P_{eq}}{P_{eq}}$$

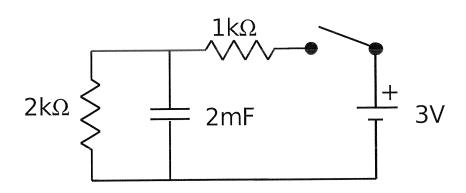
$$= \left(\frac{1.6 \times 10^8 \text{ g/m}}{9.6 \times 10^8 \text{ g/m}} + 1.6 \times 10^8 \text{ g/m}\right)$$

6,7 Consider the following circuit.

6. Find I₁:


	1	0.02 A	6	-0.02 A
	2	0.05 A	7	-0.05 A
1	3	0.25 A	8	-0.25 A
	4	0.5 A	9	-0.5 A
	5	4 A	10	-4 A

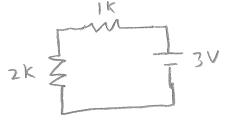
7. Find R_2 :


	1	0.4 Ω	6	5 Ω
	2	1 Ω	7	20 Ω
	3	2 Ω	8	100 Ω
	4	3 Ω	9	200 Ω
(5	4 Ω	10	400 Ω

$$KVL(3) \Rightarrow 2V - (0.25A)R_2 - |V=0$$

 $\Rightarrow (0.25A)R_2 = 1V$
 $\Rightarrow R_2 = \frac{1}{0.25}A = 4D$

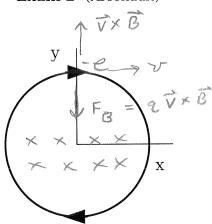
8. A steady current, of 2 amps, flows through a long wire in the z-direction at the x-y position x=10 cm, y=10 cm (10 cm, 10 cm). Another steady current, of 2 amps, flows through a long wire in the negative z-direction at the x-y position x=0 cm, y=0 cm (0,0). What is the magnitude of the magnetic field from these two currents at position x=10 cm, y=0 cm (10 cm, 0)? $\mu_0=4$ π x


9,10

9. The 2mF capacitor has no charge on it before the switch is closed. What is the current through the $1k\Omega$ resistor at the instant the switch is closed?

		San	Secretary Control of the Control of
1	1 mA	6	3 mA
2	10 mA	7	30 mA
3	1 A	8	3 A
4	10 A	9	30 A
5	1 kA	10	3 kA

10. What is the current through the $1k\Omega$ resistor a long time after the switch is thrown?


$$I = \frac{3V}{3KSL} = Im A$$

AND SERVICE	STATE OF THE PARTY			
,	1	1 mA	6	3 mA
	2	10 mA	7	30 mA
	3	1 A	8	3 A
	4	10 A	9	30 A
	5	1 kA	10	3 kA

Physics 2306

Exam 2 (Arsenault)

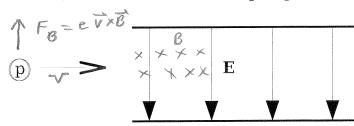
Spring 2006

- 11,12. An electron has a speed of 1.4 x 10^6 m/s, interacting with a uniform magnetic field, moves in a circular orbit with a diameter of 10 cm, as shown above. The z-direction is out of the paper. $m_e = 9.11 \times 10^{-31} \ kg$ $e = 1.6 \times 10^{-19} \ C$
- 11. What is the direction of the uniform magnetic field?

		A STATE OF THE PARTY OF THE PAR	The second secon
1	x direction	6	-z direction
2	y direction	7	
3	-x direction	8	
4	-y direction	9	
5	z direction	10	

12. What is the magnitude of this uniform magnetic field?

$$F = meV^{3} = eVB \implies meV = eBr$$


$$\Rightarrow B = meV = 9.11 \times 10^{-31} \text{kg} (1.4 \times 10^{6} \text{m/s})$$

$$\Rightarrow (.05\text{m}) 1.6 \times 10^{-12} \text{c}$$

$$= 1.59425 \times 10^{-4} \text{T}$$

	1	8 x10 ⁻⁵ T	6	0
(2	1.6 ×10 ⁻⁴ T	7	3.0x10 ⁻⁵ T
	3	8 x10 ⁻³ T	8	2.0x10 ⁻⁵ T
	4	8 x10 ⁻² T	9	3140 T
	5	0.8 T	10	6270 T

13.

A proton is moving to the right at a speed of 5×10^5 m/s. An electric field, **E**, is directed down and has a magnitude of 10^6 V/m. The magnitude and direction of a the magnetic field that will allow the proton to pass through the field region without deflection is:

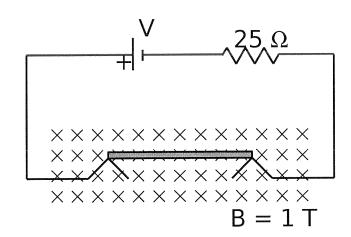
$$\Rightarrow eE = eVB \Rightarrow B = \frac{10^6 \text{Y}}{5 \times 10^5 \text{M/s}} = \frac{10}{5} \frac{\text{V}^3}{\text{M}^3}$$

$$= 2 \text{ T}$$

		and the same	Mark Control of the C
1	0.5 T into the paper (6	2 T into the paper
2	0.5 T out of the paper	7	2 T out of the paper
3	0.5 T upward	8	2 T upward
4	0.5 T down	9	2 T down
5	0.2 T out of the paper	10	3 T upward

14. The resistance of a galvanometer coil is 10Ω , and the current required for full-scale deflection is 0.05A. What shunt resistor can we use to make this into an ammeter that can measure 1A with a full scale deflection?

$$I=1A O RSh$$


1	0.1 Ω	6	0.83 Ω
2	0.5 Ω	7	0.95 Ω
3	0.53 Ω	8	1 Ω
4	0.62 Ω	9	20 Ω
5	0.72 Ω	10	100 Ω

$$T_{s} = 1A - 0.05A = .95A$$

$$R_{sh} = \frac{V_{s}}{T_{s}} = \frac{(10A)(0.05A)}{.95A}$$

$$= \frac{50}{95} x \approx 0.526716x$$

15.

A thin, 50 cm long conducting bar with mass 750g rests on two conducting supports in a uniform 1Tesla magnetic field, as shown above. A battery and a 25Ω resistor are in series with the supports. The conducting bar completes the circuit, so long as it touches the two conducting supports.

What is the largest voltage that the battery can have without having the conducting bar lift off its contacts?

1	3.68 V	6	100 V
2	37.5 V	7	184 V
3	46 V	8	368 V
4	75 V	9	817 V
5	92 V	10	1470 V

16.

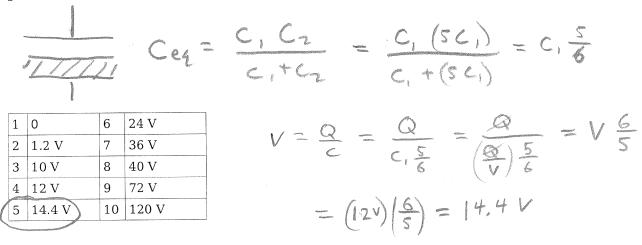
The circuit shown is in steady state. What is the voltage across the $6\mu F$ capacitor?

C=Q Ceq = 3(6)MF = ZMF

1		0	6	6 V
2	2	2 V	7	8 V
3	3	3 V	8	9 V
4	Į.	4 V	9	12 V
-		5 V	10	15 V

- 17-19 A parallel plate capacitor (with no dielectric) is charged to V_1 =12 volts and has a charge of 3 nC (3x10-9 C) on it.
- 17. What is the capacitance, C, of this capacitor?

1	1 x 10 ⁻¹⁰ F	6	1x10 ⁻⁸ F
2	2.5x10 ⁻¹⁰ F	7	2.5x10 ⁻⁸ F
3	1x10 ⁻⁹ F	8	3.6x10 ⁻⁸ F
4	2.5x10 ⁻⁹ F	9	4.0x10 ⁻⁸ F
5	3.6x10 ⁻⁹ F	10	6x10 ⁻⁸ F

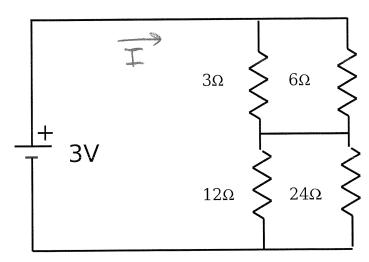

18. With no source attached the plates of the capacitor are changed to twice their original separation. In this process no charge is transferred to or from the capacitor. What is the potential, V_2 , on the capacitor after this is done?

1	0	6	8 V
	1 V	7	12 V
	2 V	8	18 V
_	3 V (9	24 V
5	4 V	10	48 V

$$\frac{V_{2}}{V_{1}} = \frac{Q_{1}(C_{1})}{C_{2}(Q_{1})} = \frac{C_{1}}{C_{2}} = \frac{d_{2}}{d_{1}}$$

$$\Rightarrow V_{2} = V_{1} \frac{d_{2}}{d_{1}} = (12V)^{2} = 24V$$

19. A mica dielectric, with K=5, is inserted between the plates of the capacitor. This dielectric only fills half of the space of the gap of the capacitor and has the same surface area as the parallel plates. What is the potential, V_3 , on the capacitor now?



Physics 2306

Exam 2 (Arsenault)

Spring 2006

20.

Find the current that is going through the 3Ω resistor.

$$V_2$$
 $= \frac{36}{3+6} \Lambda = 2\Lambda$
 $= \frac{36}{3+6} \Lambda = 2\Lambda$
 $= \frac{12(24)}{3+24} \Lambda = 8\Lambda$

$$I = \frac{3V}{loA} = 0.3.A$$

$$V_2 = I(2N) = 0.3A(2N)$$

$$= 0.6 V$$

$$I_{3r} = \frac{V_2}{3r} = \frac{0.6V}{3r} - \frac{0.2A}{3r}$$

Forula Sheet

Chapter 13
$$v = f\lambda \qquad k = \frac{2\pi}{\lambda} \qquad \omega = 2\pi f = \frac{2\pi}{T} \qquad \frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}$$

$$\frac{\partial y(x,t)}{\partial t} = \mp v \frac{\partial y(x,t)}{\partial x} \qquad v = \sqrt{\frac{F}{\mu}} \qquad \text{Power} = F_y(x,t) v_y(x,t) \qquad P_{\text{av}} = \frac{1}{2} \sqrt{\mu F} \omega^2 A^2$$

$$\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2} \qquad y(x,t) = A_{\text{sw}} \sin(kx) \cos(\omega t)$$

Chapter 16

$$p(x,t) = -B\frac{\partial y(x,t)}{\partial x} \qquad p_{\text{max}} = BkA \qquad v = \sqrt{\frac{B}{\rho}} \qquad v = \sqrt{\frac{\gamma RT}{M}}$$

$$T_{\text{kelvin}} = T_C + 273.15 \quad v = \sqrt{\frac{\gamma}{\rho}} \qquad I = \langle p(x,t)v_y(x,t)\rangle_t \quad I = \frac{1}{2}\sqrt{\rho B}\omega^2 A^2$$

$$\beta = (10\text{dB})\log\frac{I}{I_0} \qquad I_0 = 10^{-12}\frac{W}{m^2} \quad f_{\text{beat}} = f_a - f_b \qquad f_L = \frac{v + v_L}{v + v_S}f_S$$

Chapter 21

Figure 1.21
$$F = k \frac{|q_1 q_2|}{r^2} = \frac{1}{4\pi\epsilon_0} \frac{|q_1 q_2|}{r^2} \quad \epsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{Nm}^2} \quad k = 8.988 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2} \quad \vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

$$p = dq \qquad \qquad \vec{\tau} = \vec{p} \times \vec{E} \qquad \qquad U = -\vec{p} \cdot \vec{E}$$

Chapter 22

$$\Phi_E \equiv \int \vec{E} \cdot d\vec{A} \quad \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\rm encl}}{\epsilon_0}$$

Chapter 23

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} \quad -\Delta V = V_a - V_b = \int_a^b \vec{E} \cdot d\vec{l} \quad \vec{E} = -\left(\hat{i} \frac{\partial V}{\partial x} + \hat{j} \frac{\partial V}{\partial y} + \hat{k} \frac{\partial V}{\partial z}\right)$$

Chapter 24

$$C = \frac{Q}{V_{ab}} \qquad \frac{1}{C_{\text{series}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots \qquad C_{\text{parallel}} = C_1 + C_2 + C_3 + \dots \qquad U = \frac{1}{2}CV^2 = \frac{1}{2}QV$$

$$u = \frac{1}{2}\epsilon_0 E^2 \qquad C = KC_0 \qquad \qquad u = \frac{1}{2}K\epsilon_0 E^2 \qquad \qquad \oint K\vec{E} \cdot d\vec{A} = \frac{Q_{\text{encl-free}}}{\epsilon_0}$$

Chapter 25

$$I = \frac{dQ}{dt} = n |q| v_{d}A \qquad \vec{J} = nq\vec{v}_{d} \quad \rho = \frac{E}{J} \qquad \rho(T) = \rho_{0} [1 + \alpha (T - T_{0})]$$

$$V = IR \qquad R = \frac{\rho L}{A} \qquad V_{ab} = \mathcal{E} - Ir \quad P = V_{ab}I$$

$$P_{\text{resistor}} = V_{ab}I = I^{2}R$$

Chapter 26

Chapter 20
$$R_{\text{eq}} = R_1 + R_2 + R_3 + \dots \quad \frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots \quad \text{KCR } \sum I = 0 \quad \text{KVR } \sum V = 0$$

$$V_C = \frac{q}{C} \qquad \qquad q_C(t) = C\mathcal{E} \left(1 - e^{-t/RC} \right) \quad i = \frac{\text{d}q}{\text{d}t}$$

Chapter 27

The proof
$$ZI$$
 $\vec{F} = q\vec{v} \times \vec{B}$ $\Phi_B = \int \vec{B} \cdot d\vec{A} \quad \oint \vec{B} \cdot d\vec{A} = 0 \quad R = \frac{mv}{|q|B} \qquad \vec{F} = I\vec{l} \times \vec{B}$ $d\vec{F} = Id\vec{l} \times \vec{B} \quad \mu = IA \qquad \vec{\tau} = \vec{\mu} \times \vec{B} \qquad U = -\vec{\mu} \cdot \vec{B}$

Chapter 28

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2} \quad d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{l} \times \hat{r}}{r^2} \quad B_{\text{straight wire}} = \frac{\mu_0 I}{2\pi r}$$