Problems from MasteringPhysics with minor clarifications.

15.3 - Speed, Wavelength, Frequency

The speed of sound in air at $20^{\circ} \mathrm{C}$ is $v=344 \mathrm{~m} / \mathrm{s}$.

Part A

What is the wavelength, λ, of a sound wave with a frequency of $f=784 \mathrm{~Hz}$, corresponding to the note G_{5} on a piano?

$$
v=\lambda f \quad \Rightarrow \quad \lambda=\frac{v}{f}=\frac{344 \frac{\mathrm{~m}}{\mathrm{~s}}}{784 \mathrm{~Hz}}=\frac{344 \frac{\mathrm{~m}}{\mathrm{~s}}}{784 \frac{1}{\mathrm{~s}}} \approx 0.439 \mathrm{~m}
$$

Part B

What is the frequency of a sound wave with a wavelength of $\lambda=6.30 \times 10^{-2} \mathrm{~mm}$? (This frequency is too high for you to hear.)

$$
\begin{aligned}
& v=\lambda f \Rightarrow f=\frac{v}{\lambda}=\frac{344 \frac{\mathrm{~m}}{\mathrm{~s}}}{6.30 \times 10^{-2} \mathrm{~mm}} \\
& =\frac{344 \frac{\mathrm{~m}}{\mathrm{~s}}}{6.30 \times 10^{-5} \mathrm{~m}} \approx 5.46 \times 10^{6} \frac{1}{\mathrm{~s}}=5.46 \times 10^{6} \mathrm{~Hz}
\end{aligned}
$$

15.5 - Audible Wavelengths

Provided that the amplitude is sufficiently great, the human ear can respond to longitudinal waves over a range of frequencies from about 20.0 Hz to about $20,000 \mathrm{~Hz}$.

Part A

Compute the wavelength corresponding to $f=20 \mathrm{~Hz}$ for waves in air ($v=344 \frac{\mathrm{~m}}{\mathrm{~s}}$).

$$
v=\lambda f \quad \Rightarrow \quad \lambda=\frac{v}{f}=\frac{344 \frac{\mathrm{~m}}{\mathrm{~s}}}{20 \mathrm{~Hz}}=\frac{344 \frac{\mathrm{~m}}{\mathrm{~s}}}{20 \frac{1}{\mathrm{~s}}}=17.2 \mathrm{~m}
$$

Part B

Compute the wavelength corresponding to $f=20,000 \mathrm{~Hz}$ for waves in air $\left(v=344 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$.

$$
\begin{aligned}
& v=\lambda f \Rightarrow \lambda=\frac{v}{f}=\frac{344 \frac{\mathrm{~m}}{\mathrm{~s}}}{20,000 \mathrm{~Hz}}=\frac{344 \frac{\mathrm{~m}}{\mathrm{~s}}}{20,000 \frac{1}{\mathrm{~s}}} \\
& =1.72 \times 10^{-2} \mathrm{~m}=17.2 \mathrm{~mm}
\end{aligned}
$$

Part C

Compute the wavelength corresponding to 20 Hz for waves in water $\left(v=1480 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$.

$$
v=\lambda f \quad \Rightarrow \quad \lambda=\frac{v}{f}=\frac{1480 \frac{\mathrm{~m}}{\mathrm{~s}}}{20 \mathrm{~Hz}}=\frac{1480 \frac{\mathrm{~m}}{\mathrm{~s}}}{20 \frac{1}{\mathrm{~s}}}=74 \mathrm{~m}
$$

Note: In MasteringPhysics they say the correct answer is 74.0 m .

Part D

Compute the wavelength corresponding to $20,000 \mathrm{~Hz}$ for waves in water ($\left.v=1480 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$.

$$
\begin{aligned}
& v=\lambda f \Rightarrow \lambda=\frac{v}{f}=\frac{1480 \frac{\mathrm{~m}}{\mathrm{~s}}}{20,000 \mathrm{~Hz}}=\frac{1480 \frac{\mathrm{~m}}{\mathrm{~s}}}{20,000 \frac{1}{\mathrm{~s}}} \\
& =7.4 \times 10^{-2} \mathrm{~m}=74 \mathrm{~mm}
\end{aligned}
$$

Note: In MasteringPhysics they say the correct answer is $7.40 \times 10^{-2} \mathrm{~m}$.

15.6 - Transverse Wave

A certain transverse wave is described by

$$
y(x, t)=A \cos \left[2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)\right]
$$

where $A=6.10 \mathrm{~mm}, \lambda=28.0 \mathrm{~cm}$, and $T=3.10 \times 10^{-2} \mathrm{~s}$.

Part A

Determine the wave's amplitude.
Enter your answer in meters.
The factor that multiplies the cosine function (\cos) is the amplitude. By inspection

$$
A=6.10 \mathrm{~mm}=6.1 \mathrm{~mm} \times \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}=6.1 \times 10^{-3} \mathrm{~m}
$$

Part B

Determine the wave's wavelength, λ.

Enter your answer in meters.

By inspection

$$
\lambda=28.0 \mathrm{~cm}=28.0 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=0.28 \mathrm{~m}
$$

Part C

Determine the wave's frequency, f.
Enter your answer in hertz (Hz).

$$
f=\frac{1}{T}=\frac{1}{3.10 \times 10^{-2} \mathrm{~s}} \approx 32.258 \mathrm{~Hz} \approx 32.3 \mathrm{~Hz}
$$

Part D

Determine the wave's speed of propagation, v.
Enter your answer in meters per second ($\frac{\mathrm{m}}{\mathrm{s}}$).

$$
\begin{aligned}
& v=f \lambda=\frac{\lambda}{T}=\frac{28 \mathrm{~cm}}{3.1 \times 10^{-2} \mathrm{~s}}=\frac{28 \mathrm{~cm}}{3.1 \times 10^{-2} \mathrm{~s}} \times \frac{\mathrm{m}}{100 \mathrm{~cm}} \\
& \approx 9.03 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Part E

Determine the wave's direction of propagation.
Enter your answer in hertz (Hz).
The wave function is

$$
y(x, t)=A \cos \left[2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)\right]
$$

where A, λ, and T are positive constants. This may be rewritten as

$$
y(x, t)=A \cos \left[\frac{2 \pi}{\lambda}\left(x-\frac{\lambda}{T} t\right)\right]=A \cos \left[\frac{2 \pi}{\lambda}(x-v t)\right]
$$

where $v \equiv \frac{\lambda}{T}$. We see that this has a function form that is a function moving in the positive x-direction, $y=f(x-v t)$. So the wave is propagating in the $+x$ direction.

Of course all this work is not necessary, it's just trying to make the point very clear for this solution.

15.7-Transverse Waves on a String

Transverse (sinusoidal) waves on a string have wave speed $v=8.00 \mathrm{~m} / \mathrm{s}$, amplitude $A=0.0700 \mathrm{~m}$, and wavelength $\lambda=$ 0.320 m . The waves travel in the -x direction, and at $t=$ 0 the $x=0$ end of the string has its maximum upward displacement.

Part A

Find the frequency of these waves.
Express your answer to four significant figures.

$$
f=\frac{v}{\lambda}=\frac{8 \frac{\mathrm{~m}}{\mathrm{~s}}}{0.32 \mathrm{~m}}=25 \mathrm{~Hz}
$$

Part B

Find the period of these waves.
Express your answer to four significant figures.

$$
T=\frac{1}{f}=\frac{\lambda}{v}=\frac{0.32 \mathrm{~m}}{8 \frac{\mathrm{~m}}{\mathrm{~s}}}=0.04 \mathrm{~s}
$$

Part C

Find the wave number of these waves.
Express your answer to four significant figures.

$$
k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{0.32 \mathrm{~m}} \approx 19.63495 \frac{1}{\mathrm{~m}} \approx 19.63 \frac{\mathrm{rad}}{\mathrm{~m}}
$$

Part D

Write a wave function describing the wave.
Express your answer in terms of the variables x and t. Enter each numeric value to four significant figures.

$$
y(x, t)=A \cos (k x+\omega t)
$$

where A is the amplitude, k is the wave number (Part C) and ω is the angular frequency.

$$
\begin{aligned}
& \omega=2 \pi f=2 \pi\left(\frac{v}{\lambda}\right)=2 \pi \times\left(\frac{8 \frac{\mathrm{~m}}{\mathrm{~s}}}{0.32 \mathrm{~m}}\right) \\
& \approx 157.07963267 \frac{1}{\mathrm{~s}} \approx 157.1 \frac{\mathrm{rad}}{\mathrm{~s}}
\end{aligned}
$$

which gives us

$$
y(x, t) \approx(0.07 \mathrm{~m}) \cos \left(19.63 \frac{\mathrm{rad}}{\mathrm{~m}} x+157.1 \frac{\mathrm{rad}}{\mathrm{~s}} t\right)
$$

Not including the rad (radians) unit also gives a valid answer. The wave is traveling to in the negative x direction so the two terms in the cos function are added and have the same sign.

Part E

Find the transverse displacement of a particle at $x=0.360 \mathrm{~m}$ at time $t=0.150$ s.
Express your answer to three significant figures.

$$
\begin{aligned}
& y(0.360 \mathrm{~m}, 0.150 \mathrm{~s}) \\
\approx & (0.07 \mathrm{~m}) \cos \left(19.63495 \frac{1}{\mathrm{~m}} 0.360 \mathrm{~m}+157.07963 \frac{1}{\mathrm{~s}} 0.150 \mathrm{~s}\right) \\
& \approx 0.0494974 \mathrm{~m} \approx 0.0495 \mathrm{~m}
\end{aligned}
$$

Part F

How much time must elapse from the instant in part (E) until the particle at $x=0.360 \mathrm{~m}$ next has maximum upward displacement?

Express your answer to three significant figures.

In general

$$
y(x, t)=A \cos (k x+\omega t)
$$

for any x and t. So y is the maximum, A, when

$$
k x+\omega t=2 \pi N
$$

where N is any integer. Solving for t gives

$$
t=\frac{2 \pi}{\omega} N-\frac{k}{\omega} x=\frac{\lambda}{v} N-\frac{x}{v}
$$

where we have used $\omega=2 \pi f=2 \pi \frac{v}{\lambda}$ and $v=\frac{\omega}{k}$. Plugging in $\lambda=0.320 \mathrm{~m}, v=8.00 \frac{\mathrm{~m}}{\mathrm{~s}}$, and $x=0.360 \mathrm{~m}$ we get

$$
t=\frac{0.320 \mathrm{~m}}{8 \frac{\mathrm{~m}}{\mathrm{~s}}} N-\frac{0.360 \mathrm{~m}}{8 \frac{\mathrm{~m}}{\mathrm{~s}}}=(0.04 N-0.045) \mathrm{s}
$$

We are looking for N that gives us the first non-zero of $\Delta t \equiv t-0.150$ s.

$$
\Delta t=(0.04 N-0.045) \mathrm{s}-0.150 \mathrm{~s}=(0.04 N-0.195) \mathrm{s}
$$

We see that $\Delta t=0$ when $N \approx 4.9$, so the first value of Δt that is positive with N an integer is with $N=5$. So

$$
\Delta t=(0.04 \times 5-0.195) \mathrm{s} .=0.005 \mathrm{~s} .
$$

Note: We do not round off any numbers.

15.15 - Speed of Propagation vs. Particle Speed

Part A

The equation

$$
y(x, t)=A \cos \left[2 \pi f\left(\frac{x}{v}-t\right)\right]
$$

may be written as

$$
y(x, t)=A \cos \left[\frac{2 \pi}{\lambda}(x-v t)\right]
$$

$$
v_{y}=\frac{\partial}{\partial t} y(x, t)=\frac{\partial}{\partial t}\left\{A \cos \left[\frac{2 \pi}{\lambda}(x-v t)\right]\right\}
$$

Using the chain rule we get

$$
\begin{aligned}
v_{y}= & A\left\{\frac{\partial}{\partial\left[\frac{2 \pi}{\lambda}(x-v t)\right]} \cos \left[\frac{2 \pi}{\lambda}(x-v t)\right]\right\}\left\{\frac{\partial}{\partial t}\left[\frac{2 \pi}{\lambda}(x-v t)\right]\right\} \\
& =A\left\{-\sin \left[\frac{2 \pi}{\lambda}(x-v t)\right]\right\}\left\{\frac{\partial}{\partial t}\left[\frac{2 \pi}{\lambda} x-\frac{2 \pi v}{\lambda} t\right]\right\} \\
& =A\left\{-\sin \left[\frac{2 \pi}{\lambda}(x-v t)\right]\right\}\left\{-\frac{2 \pi}{\lambda} v\right\} \\
& \Rightarrow v_{y}=\frac{2 \pi v}{\lambda} A \sin \left[\frac{2 \pi}{\lambda}(x-v t)\right]
\end{aligned}
$$

Part B

Find the maximum speed of a particle of the string.
When v_{y} is a maximum the sin in the previous answer will be 1 . So

$$
v_{y \max }=\frac{2 \pi v}{\lambda} A
$$

15.17 - Transverse Pulse on a Rubber Tube

One end of a rubber tube of length L, with total mass m_{1}, is fastened to a fixed support. A cord attached to the other end passes over a pulley and supports an object with a mass of m_{2}. The tube is struck a transverse blow at one end.

Part A

Find the time, t, required for the pulse to reach the other end.
Take free fall acceleration to be g.
The hanging mass, m_{2}, will make the tension in the rubber tube, $F=m_{2} g$. The linear mass density of the string is $\mu=\frac{m_{1}}{L}$. So the speed of a wave on the rubber tube (like a string) is

$$
v=\sqrt{\frac{F}{\mu}}=\sqrt{\frac{m_{2} g}{\frac{m_{1}}{L}}}=\sqrt{\frac{m_{2} g L}{m_{1}}} .
$$

The pulse travels a distance of L in the time, t, that we are looking for, so

$$
v t=L \quad \Rightarrow \quad t=\frac{L}{v}=\frac{L}{\sqrt{\frac{m_{2} g L}{m_{1}}}}=\sqrt{\frac{m_{1} L}{m_{2} g}} .
$$

