Problems from MasteringPhysics with minor clarifications.

15.3 - Speed, Wavelength, Frequency

The speed of sound in air at $20^{\circ} \mathrm{C}$ is $v=344 \mathrm{~m} / \mathrm{s}$.

Part A

What is the wavelength, λ, of a sound wave with a frequency of $f=784 \mathrm{~Hz}$, corresponding to the note G_{5} on a piano?

Part B

What is the frequency of a sound wave with a wavelength of $\lambda=6.30 \times 10^{-2} \mathrm{~mm}$? (This frequency is too high for you to hear.)

15.5 - Audible Wavelengths

Provided that the amplitude is sufficiently great, the human ear can respond to longitudinal waves over a range of frequencies from about 20.0 Hz to about $20,000 \mathrm{~Hz}$.

Part A

Compute the wavelength corresponding to $f=20 \mathrm{~Hz}$ for waves in air $\left(v=344 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$.

Part B

Compute the wavelength corresponding to $f=20,000 \mathrm{~Hz}$ for waves in air $\left(v=344 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$.

Part C

Compute the wavelength corresponding to 20 Hz for waves in water $\left(v=1480 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$.

Part D

Compute the wavelength corresponding to $20,000 \mathrm{~Hz}$ for waves in water $\left(v=1480 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$.

15.6 - Transverse Wave

A certain transverse wave is described by

$$
y(x, t)=A \cos \left[2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)\right]
$$

where $A=6.10 \mathrm{~mm}, \lambda=28.0 \mathrm{~cm}$, and $T=3.10 \times 10^{-2} \mathrm{~s}$.

Part A

Determine the wave's amplitude.
Enter your answer in meters.

Part B

Determine the wave's wavelength, λ.
Enter your answer in meters.

Part C

Determine the wave's frequency, f. Enter your answer in hertz (Hz).

Part D

Determine the wave's speed of propagation, v. Enter your answer in meters per second ($\frac{\mathrm{m}}{\mathrm{s}}$).

Part E

Determine the wave's direction of propagation.
Enter your answer in hertz (Hz).

15.7-Transverse Waves on a String

Transverse (sinusoidal) waves on a string have wave speed $v=8.00 \mathrm{~m} / \mathrm{s}$, amplitude $A=0.0700 \mathrm{~m}$, and wavelength $\lambda=$ 0.320 m . The waves travel in the -x direction, and at $t=$ 0 the $x=0$ end of the string has its maximum upward displacement.

Part A

Find the frequency of these waves.
Express your answer to four significant figures.

Part B

Find the period of these waves.
Express your answer to four significant figures.

Part C

Find the wave number of these waves.
Express your answer to four significant figures.

Part D

Write a wave function describing the wave.
Express your answer in terms of the variables x and t. Enter each numeric value to four significant figures.

Part E

Find the transverse displacement of a particle at $x=0.360 \mathrm{~m}$ at time $t=0.150$ s.
Express your answer to three significant figures.

Part F

How much time must elapse from the instant in part (E) until the particle at $x=0.360 \mathrm{~m}$ next has maximum upward displacement?
Express your answer to three significant figures.

15.15 - Speed of Propagation vs. Particle Speed

Part A

The equation

$$
y(x, t)=A \cos \left[2 \pi f\left(\frac{x}{v}-t\right)\right]
$$

may be written as

$$
y(x, t)=A \cos \left[\frac{2 \pi}{\lambda}(x-v t)\right]
$$

Part B

Find the maximum speed of a particle of the string.

15.17 - Transverse Pulse on a Rubber Tube

One end of a rubber tube of length L, with total mass m_{1}, is fastened to a fixed support. A cord attached to the other end passes over a pulley and supports an object with a mass of m_{2}. The tube is struck a transverse blow at one end.

Part A

Find the time, t, required for the pulse to reach the other end.
Take free fall acceleration to be g.

