Problems 21.8,20,22 from MasteringPhysics with minor $-Q$ is located at some point on the $+x$-axis. clarifications.

21.8 - Charged Aluminum Spheres

Two small aluminum spheres, each having mass $m=0.0250$ kg , are separated by $l=80.0 \mathrm{~cm}$.

Part A

How many electrons, N, does each sphere contain? (The atomic mass of aluminum is $M=26.982 \mathrm{~g} / \mathrm{mol}$, and its atomic number is 13 .)

Part B

How many electrons would have to be removed from one sphere and added to the other to cause an attractive force between the spheres of magnitude $F=1.00 \times 10^{4} \mathrm{~N}$ (roughly one ton)? Assume that the spheres may be treated as point charges.

Part C

What fraction of all the electrons in each sphere does this represent?

21.8 - Two Point Charges

Two point charges are placed on the x-axis as follows: one positive charge, q_{1}, is located to the right of the origin at $x=x_{1}$, and a second positive charge, q_{2}, is located to the left of the origin at $x=x_{2}$.

Part A

What is the total force (magnitude and direction) exerted by these two charges on a negative point charge, q_{3}, that is placed at the origin?
Use ϵ_{0} for the permittivity of free space. Take positive forces to be along the positive x -axis. Do not use unit vectors.

21.22 - Two Point Charges

Two positive point charges q are placed on the y axis at $y=a$ and $y=-a$. A negative point charge

Part A

Find the x-component of the net force that the two positive charges exert on $-Q$. (Your answer should only involve k, q, Q, a, and the coordinate x of the third charge.)

Part B

Find the y-component of the net force that the two positive charges exert on $-Q$. (Your answer should only involve k, q, Q, a, and the coordinate x of the third charge.)

Part C

What is the net force on the charge $-Q$ when it is at the origin $(x=0)$?

