Problem 21.94 from MasteringPhysics with minor clarifications.

21.94 - Semicircle of Charge

Positive charge Q is uniformly distributed around a semicircle of radius a. The center of curvature, point P, is at the origin.

Part A

Find the magnitude of the electric field at the center of curvature P. (Your answer should only involve k, Q, and a.)

From symmetry the total x-component of the electric field will be zero. So we will compute the y-component for a small piece of the semicircle of length $\mathrm{d} s=a \mathrm{~d} \theta$ with charge on this small length being

$$
\mathrm{d} Q=\frac{Q}{\pi a} \mathrm{~d} s=\frac{Q}{\pi a}(a \mathrm{~d} \theta)=\frac{Q}{\pi} \mathrm{~d} \theta .
$$

So the magnitude of the electric field from this small piece of charge is

$$
\mathrm{d} E=k \frac{\mathrm{~d} Q}{a^{2}}=k \frac{\frac{Q}{\pi} \mathrm{~d} \theta}{a^{2}}=k \frac{Q}{\pi a^{2}} \mathrm{~d} \theta .
$$

The y-component of this small electric field is

$$
\mathrm{d} E_{y}=-\mathrm{d} E \sin \theta=-\left(k \frac{Q}{\pi a^{2}} \mathrm{~d} \theta\right) \sin \theta=-k \frac{Q}{\pi a^{2}} \sin \theta \mathrm{~d} \theta .
$$

We sum over all values of θ to get the total y-component of the electric field

$$
\begin{aligned}
& E_{y}=\int_{\theta=0}^{\pi}-k \frac{Q}{\pi a^{2}} \sin \theta \mathrm{~d} \theta=-k \frac{Q}{\pi a^{2}} \int_{\theta=0}^{\pi} \sin \theta \mathrm{d} \theta \\
& =-k \frac{Q}{\pi a^{2}}\left(-\left.\cos \theta\right|_{\theta=0} ^{\pi}\right)=-k \frac{Q}{\pi a^{2}}(1+1)=-\frac{2 k Q}{\pi a^{2}} .
\end{aligned}
$$

So the magnitude of E_{y} is

$$
\left|E_{y}\right|=\frac{2 k Q}{\pi a^{2}}
$$

Part B

What is the direction of the electric field at the center of curvature P.

From Part A we see that the electric field is in the negative y-direction. So the direction of the electric field is downward.

