Problem 22.38,42,46; 23.3,17,28 from MasteringPhysics with minor clarifications.

# 22.38 - Conducting Spherical Shell



A conducting spherical shell with inner radius a and outer radius b has a positive point charge Q located at its center. The total charge on the shell is -3Q, and it is insulated from its surroundings.

This means the net charge on the conductor is -3Q, on both the inner and outer surface.

#### Part A

Derive the expression for the electric field magnitude in terms of the distance r from the center for the region r < a.

## Part B

Derive the expression for the electric field magnitude in terms of the distance r from the center for the region a < r < b.

# Part C

Derive the expression for the electric field magnitude in terms of the distance r from the center for the region r > b.

#### Part D

What is the surface charge density on the inner surface of the conducting shell,  $\rho_{\rm in}$ ?

# Part E

What is the surface charge density on the outer surface of the conducting shell,  $\rho_{\text{out}}$ ?

# 22.42 - Solid Conducting Sphere with Insulating Shell

A solid conducting sphere with radius R carries a positive total charge Q. The sphere is surrounded by an insulating

shell with inner radius R and outer radius 2R. The insulating shell has a uniform charge density  $\rho$ .

## Part A

Find the value of  $\rho$  so that the net charge of the entire system is zero.

## Part B

If  $\rho$  has the value found in part A, find the magnitude of the electric field, E, in the region 0 < r < R.

#### Part C

If  $\rho$  has the value found in part A, find the magnitude of the electric field in the region R < r < 2R.

#### Part D

If  $\rho$  has the value found in part A, find the direction of the electric field in the region R < r < 2R.

## Part E

If  $\rho$  has the value found in part A, find the magnitude of the electric field in the region r > 2R.

# 22.46 - Conducting Tube

A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length  $+\alpha$ , where alpha is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length  $+\alpha$ .

# Part A

Calculate the electric field in terms of  $\alpha$  and the distance r from the axis of the tube for r < a.

#### Part B

Calculate the electric field in terms of  $\alpha$  and the distance r from the axis of the tube for a < r < b.

# Part C

Calculate the electric field in terms of  $\alpha$  and the distance r from the axis of the tube for r > b.

#### Part D

What is the charge per unit length,  $\alpha_{in}$ , on the inner surface of the tube?

#### Part E

What is the charge per unit length,  $\alpha_{\rm out}$ , on the outer surface of the tube?

# 23.3 - Moving Charges, Energy Methods



A small metal sphere, carrying a net charge of  $q_1$ =-3.00 $\mu$ C, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of  $q_2$ =-7.30 $\mu$ C and mass  $m_2$ =1.70g, is projected toward  $q_1$ . When the two spheres are  $d_0$ =0.800m apart,  $q_2$  is moving toward  $q_1$  with speed  $v_{20}$ =22.0m/s. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.

# Part A

What is the speed,  $v_{21}$ , of  $q_2$  when the spheres are  $d_1$ =0.430m apart?

#### Part B

How close,  $d_2$ , does  $q_2$  get to  $q_1$ ?

# 23.17 - Charge in a Uniform Electric Field

A charge of q is placed in a uniform electric field that is directed vertically upward and that has a magnitude of E.

# Part A

What work ,  $W_R$ , is done by the electric force when the charge moves a distance of  $x_1$  to the right?

#### Part B

What work,  $W_U$ , is done by the electric force when the charge moves a distance of  $x_2$  upward?

## Part C

What work,  $W_{45^{\circ}}$ , is done by the electric force when the charge moves a distance of  $x_3$  at an angle of  $45.0^{\circ}$  downward from the horizontal?

# 23.28 - Electric Potential

At a certain distance from a point charge, the potential and electric field magnitude due to that charge are  $V=4.98\mathrm{V}$  and  $E=12.0\mathrm{V/m}$ , respectively. (Take the potential to be zero at infinity.)

#### Part A

What is the distance, d, to the point charge?

#### Part B

What is the magnitude of the charge, q?

#### Part C

Is the electric field directed toward or away from the point charge?