Problem 22.38,42,46; 23.3,17,28 from MasteringPhysics with minor clarifications.

22.38 - Conducting Spherical Shell

A conducting spherical shell with inner radius a and outer radius b has a positive point charge Q located at its center. The total charge on the shell is $-3 Q$, and it is insulated from its surroundings.

This means the net charge on the conductor is $-3 Q$, on both the inner and outer surface.

Part A

Derive the expression for the electric field magnitude in terms of the distance r from the center for the region $r<a$.

Part B

Derive the expression for the electric field magnitude in terms of the distance r from the center for the region $a<r<b$.

Part C

Derive the expression for the electric field magnitude in terms of the distance r from the center for the region $r>b$.

Part D

What is the surface charge density on the inner surface of the conducting shell, $\rho_{\text {in }}$?

Part E

What is the surface charge density on the outer surface of the conducting shell, $\rho_{\text {out }}$?

22.42 - Solid Conducting Sphere with Insulating Shell

A solid conducting sphere with radius R carries a positive total charge Q. The sphere is surrounded by an insulating
shell with inner radius R and outer radius $2 R$. The insulating shell has a uniform charge density ρ.

Part A

Find the value of ρ so that the net charge of the entire system is zero.

Part B

If ρ has the value found in part A, find the magnitude of the electric field, E, in the region $0<r<R$.

Part C

If ρ has the value found in part A, find the magnitude of the electric field in the region $R<r<2 R$.

Part D

If ρ has the value found in part A , find the direction of the electric field in the region $R<r<2 R$.

Part E

If ρ has the value found in part A, find the magnitude of the electric field in the region $r>2 R$.

22.46 - Conducting Tube

A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length $+\alpha$, where alpha is a positive constant with units of C / m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length $+\alpha$.

Part A

Calculate the electric field in terms of α and the distance r from the axis of the tube for $r<a$.

Part B

Calculate the electric field in terms of α and the distance r from the axis of the tube for $a<r<b$.

Part C

Calculate the electric field in terms of α and the distance r from the axis of the tube for $r>b$.

Part D

What is the charge per unit length, α_{in}, on the inner surface of the tube?

Part E

What is the charge per unit length, $\alpha_{\text {out }}$, on the outer surface of the tube?

23.3 - Moving Charges, Energy Methods

A small metal sphere, carrying a net charge of $q_{1}=-3.00 \mu \mathrm{C}$, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of $q_{2}=-7.30 \mu \mathrm{C}$ and mass $m_{2}=1.70 \mathrm{~g}$, is projected toward q_{1}. When the two spheres are $d_{0}=0.800 \mathrm{~m}$ apart, q_{2} is moving toward q_{1} with speed $v_{20}=22.0 \mathrm{~m} / \mathrm{s}$. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.

Part A

What is the speed, v_{21}, of q_{2} when the spheres are $d_{1}=0.430 \mathrm{~m}$ apart?

Part B

How close, d_{2}, does q_{2} get to q_{1} ?

23.17 - Charge in a Uniform Electric Field

A charge of q is placed in a uniform electric field that is directed vertically upward and that has a magnitude of E.

Part A

What work, W_{R}, is done by the electric force when the charge moves a distance of x_{1} to the right?

Part B

What work, W_{U}, is done by the electric force when the charge moves a distance of x_{2} upward?

Part C

What work, $W_{45^{\circ}}$, is done by the electric force when the charge moves a distance of x_{3} at an angle of 45.0° downward from the horizontal?

23.28 - Electric Potential

At a certain distance from a point charge, the potential and electric field magnitude due to that charge are $V=4.98 \mathrm{~V}$ and $E=12.0 \mathrm{~V} / \mathrm{m}$, respectively. (Take the potential to be zero at infinity.)

Part A

What is the distance, d, to the point charge?

Part B

What is the magnitude of the charge, q ?

Part C

Is the electric field directed toward or away from the point charge?

