Problems 26.1,8,20 from MasteringPhysics.

26.1

Two resistors, with resistances of R_1 and R_2 are connected in parallel, and the combination is connected across a DC line with a voltage of V.

Part A

What is the resistance of the parallel combination?

Part B

What is the total current through the parallel combination?

Part C

What is the current through the first resistor?

Part D

What is the current through the second resistor?

Part A

Compute the equivalent resistance of the network in the figure. The battery has negligible internal resistance.

Part B

What is the current through the 3.00Ω resistor?

Part C

What is the current through the 6.00Ω resistor?

Part D

What is the current through the 12.00Ω resistor?

Part E

What is the current through the 4.00Ω resistor?

26.20

Part A

Find the emf EMF \mathcal{E}_1 in the circuit of the figure.

Part B

Find the emf EMF \mathcal{E}_2 in the circuit of the figure.

Part C

Find the potential difference of point b relative to point a.

$$Req = \frac{1}{R_1 + R_2} \frac{R_2 + R_1}{R_1 + R_2} \left[\frac{R_1 R_2}{R_1 + R_2} \right]$$

B)
$$I = \frac{V}{R_{e_2}} = \frac{V(R_1 + R_2)}{R_1 R_2}$$

$$= \frac{V}{R_i}$$

$$P)$$
 $I_2 = \begin{bmatrix} \frac{1}{R_2} \end{bmatrix}$

Z6.8
A)
$$I_{rb}$$

$$Reg_1$$

$$Reg_2$$

$$Re_{22} = \frac{1}{12x^{4}} + \frac{1}{4x} = 3x$$

B)
$$I_{\tau} = \frac{\mathcal{E}}{Req}$$
 $V_{Req} = I_{\tau} Re2 = \frac{\mathcal{E}}{Re2} Re2 = \mathcal{E} \frac{2\Lambda}{5\Lambda}$

$$I_{3n} = V_{Reg} = \frac{\mathcal{E}_{3}}{R_{2n}} = 60 \frac{2}{15}A = \boxed{8A}$$

26,8

c)
$$I_{6x} = \frac{V_{Re21}}{R_{6x}} = \frac{60(\frac{2}{5})V}{6x} = 4A$$

D)
$$I_{12n} = \frac{V_{Re22}}{12n} = \frac{60(\frac{3}{5})v}{12n} = \boxed{34}$$

E)
$$I_{42} = \frac{V_{Req^2}}{4x} = \frac{60(\frac{3}{5})V}{4x} = \boxed{9A}$$

A)
$$KVRO$$
 $\Rightarrow 1A(4x) + 1A(1x) - 8, -1A(6x) + 20v$
-1A(1x) = 0

$$\Rightarrow (4+1-6+20-4)V=\xi_1 \Rightarrow \xi_1=[18V]$$

B)
$$VR = -2A(2n) + 18V - 1A(1n) - 1A(4n)$$