
Final Exam, Phys3355, Fall 2005, with solution 1

Box your answers.

1 [15pts] Pulling a Block

x

y

P

α
m

A block, of mass m, is pulled along a flat level plane, by a string that is attached to the block. The string pulls up
at an angle α from the plane, with a constant force with a magnitude of P . The coefficient of kinetic fiction between the
block and the plane is µk. The usual gravitational field acts down, ~g = −g ŷ.

1.1 (5) Free Body Diagram

Draw a free body diagram of the block.

? ?
1.1 solution

x

y

P
P sin α

P cosα

N

F = µkN

mg

α
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1.2 (10) Acceleration

Find the acceleration, ẍ, of the block.

? ?
1.2 solution

Applying Newton’s second law we get
∑

Fx = P cosα − µkN = mẍ (1.1)
∑

Fy = N + P sin α − mg = 0 (1.2)

where we assumed that the block is not moving in the y direction. Solving for ẍ by adding µk times equation 1.2 to
equation 1.1 we get

P cosα + µkP sinα − µkmg = mẍ ⇒ ẍ =
P

m
(cosα + µk sin α) − µkg . (1.3)

6 6
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2 [10pts] Moment of Inertia

Find the moment-of-inertia tensor, I, for rotations about the origin for one particle, with mass m, that is located on the
x axis at the position (x, y, z) = (a, 0, 0). Write your answer in the form

I =





Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz



 . (2.1)

? ?
2.0 solution

By inspection Ixx = 0, Ixy = Iyx = Iyz = Izy = Izx = Ixz = 0, and Iyy = Izz = m(x2 + 02) = ma2. So

I =





0 0 0
0 ma2 0
0 0 ma2



 . (2.2)
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3 [20pts] Inverse Rocket (Again)

A large abandoned space ship travels through space which is filled with uniformly distributed “space dust,” with mass
density ρ. The only forces on the space ship are from the dust that collects on the ship as it goes through the dust.
Consider the space dust to be at rest (not moving) before the ship hits it. Assume that all the dust that gets hit by the
ship sticks to the ship and effectively increases the mass of the ship, and slows down the ship. All the motion is in one
dimension.

3.1 (10) Find the Rate of Change of Mass of the Ship

A is the cross-sectional area of the ship that is passing (cutting) through the dust. Let m be the mass of the ship and
the collected dust. Let v be the speed of the ship and the collected dust. Find rate of change of mass of the ship and the
collected dust, dm

dt
, as a function v, ρ, and A. Use the fact that the ship gains the mass of all the dust that it hits.

? ?
3.1 solution

As the ship moves at speed v

dm = ρ dV = ρAv dt ⇒
dm

dt
= ρAv . (3.1)

6 6

3.2 (10) Power

Find the rate at which kinetic energy is lost, P , as a function of v, ρ and A. In this case this power is the rate at which
heat is generated on the front of the ship as the dust inelastically collides with it.

? ?
3.2 solution
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Both the mass of the ship (plus collected dust), m, and the speed of the ship, v, are changing with time. So

P = −
d

dt

(

1

2
mv2

)

= −
1

2
v2ṁ − vmv̇ . (3.2)

From conservation of momentum (or the inverse rocket equation) we have

mv = const ⇒ mv̇ + vṁ = 0 . (3.3)

With that and equation 3.2 we have

P = −
1

2
v2ṁ − v (−vṁ) =

1

2
v2ṁ (3.4)

and with equation 3.1 we get

P =
1

2
v2 (ρAv) ⇒ P =

1

2
ρAv3 . (3.5)

This is the rate at which the kinetic energy of the system (ship plus dust) decreases.

6 6

4 [15pts] Tether-ball

θ

a

l0 m

θ

A tether-ball post has a radius a. A small ball with mass m swings on the end of the massless stretch-less rope. The
length of the rope decreases as the angle θ increases, as the ball gets closer to the pole. Consider all the motion to be in
the horizontal plane, so the effect of gravity is ignored. Think of it as a tether-ball on a smooth floor. The length of the
rope when θ is zero is l0.

4.1 (10) Lagrangian

Find the Lagrangian, L(θ, θ̇), for the tether-ball system using θ as your generalized coordinate variable.

? ?
4.1 solution

L = T − U = T =
1

2
m

(

~̇r
)2

. (4.1)
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~r

θ

θ

y

x

The length of the free rope will be l0 − aθ. If we choose the center of the pole to be the origin with x to the right and
y up we get

~r = [a sin θ + (l0 − aθ) cos θ] x̂ + [−a cos θ + (l0 − aθ) sin θ] ŷ

⇒ ~̇r =
[

aθ̇ cos θ − aθ̇ cos θ − (l0 − aθ) θ̇ sin θ
]

x̂ +
[

aθ̇ sin θ − aθ̇ sin θ + (l0 − aθ) θ̇ cos θ
]

ŷ

=
[

− (l0 − aθ) θ̇ sin θ
]

x̂ +
[

(l0 − aθ) θ̇ cos θ
]

ŷ ⇒
(

~̇r
)2

= (l0 − aθ)
2
θ̇2 = l20 θ̇

2 − 2l0aθθ̇2 + a2θ2θ̇2 . (4.2)

So

L =
1

2
m (l0 − aθ)

2
θ̇2 =

1

2
ml20 θ̇

2 − ml0aθθ̇2 +
1

2
ma2θ2θ̇2 . (4.3)

6 6

4.2 (5) Equation of Motion

Find the second order ordinary differential equation for the motion of θ.

? ?
4.2 solution

∂L

∂θ
−

d

dt

∂L

∂θ̇
= 0 ⇒ −ml0aθ̇2 + ma2θθ̇2 −

d

dt

(

ml20θ̇ − 2ml0aθθ̇ + ma2θ2θ̇
)

= 0

⇒ −ml0aθ̇2 + ma2θθ̇2 −
(

ml20θ̈ − 2ml0aθθ̈ − 2ml0aθ̇2 + 2ma2θθ̇2 + ma2θ2θ̈
)

= 0

⇒ ml0aθ̇2 − ma2θθ̇2 − ml20θ̈ − ma2θ2θ̈ + 2ml0aθθ̈ = 0

⇒ ml20θ̈ + ma2θ2θ̈ − 2ml0aθθ̈ + ma2θθ̇2 − ml0aθ̇2 = 0 . (4.4)

6 6
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5 [20pts] Two Dimensional Hard Sphere Scattering

R

θ

We will look at the analog of hard smooth sphere scattering, but with motion in just two dimensions. Consider all
motion to be constrained to a plane, kind of like hockey pucks on an ice rink. We have smooth circular target particles
with radius R. The target particles are fixed. The projectiles are small and scatter elastically off the target particles.
There are Ntar sparsely distributed target particles over a length L along a direction that is perpendicular to a beam of
small projectiles with a uniform intensity of Iinc (particles per unit length, per unit time). The width of the beam of
particles is much larger than R, and smaller than all the target particles together (the whole target), as our scattering
theory requires.

5.1 (10) Particles Not Scattered

Find the intensity (particles per unit length, per unit time) of the beam of small projectiles that go through the target
undeflected, Iun.

? ?
5.1 solution

The total length of all targets is Ntar2R. So the fraction of the total target length that is covered by targets is 2RNtar

L
. So

Iun = Iinc

(

1 −
2RNtar

L

)

. (5.1)

6 6

5.2 (10) Differential Cross Section

The width of the incident beam of particles is W (W < L and W ≫ R). Find the intensity (particles per unit length, per
unit time) of the beam of small projectiles that is scattered at an angle θ at a distance D from the target (D ≫ L ≫ R),
Isc. In this case −π ≤ θ ≤ π and we don’t need to consider solid angle. Hint: Start by finding the differential number of
scatters, dNsc, as a function of the differential impact parameter, db, and then consider the impact parameter, b, to be a
function of θ.

? ?
5.2 solution

θ

α
α

α
αb
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Let Ninc be the number of projectiles particles incident on the target over some time ∆t. Let the rate of incident
particles be constant over time. So the incident intensity is Iinc = 1

∆t
dNinc

dx
, where x is the distance across the beam. Let

Nsc be the number of particles that are scattered from the Ninc incident projectiles

dNsc = Ninc

2RNtar

L

db

2R
= Ninc

Ntar

L
db , (5.2)

and from the above figure

b = R sin α and 2α + θ = π ⇒ α =
π

2
−

θ

2

⇒ b = R sin

(

π

2
−

θ

2

)

= R cos
θ

2
⇒ db = −

1

2
R

(

sin
θ

2

)

dθ .

So equation 5.2 may be rewritten as

dNsc = Ninc

Ntar

L
|db| = Ninc

Ntar

L

1

2
R

(

sin
θ

2

)

dθ =
1

2
Ninc

RNtar

L

(

sin
θ

2

)

dθ . (5.3)

We are measuring the intensity at a distance D from the target, so we will measure dθ as ds
D

, where ds is a infinitesimal
distance along a circular arc of radius D. So

dNsc =
1

2
Ninc

RNtar

L

(

sin
θ

2

)

ds

D
. (5.4)

So the intensity of scattered particles at angle θ is

Isc =
1

∆t

dNsc

ds
=

1

2

Ninc

∆t

RNtar

DL

(

sin
θ

2

)

(5.5)

The time rate of incident particles make be replaced with a function of the uniform incident intensity, Iinc because

Ninc

∆t
=

∫ W

x=0

Iinc dx = IincW . (5.6)

So

Isc =
1

2
(IincW )

RNtar

DL

(

sin
θ

2

)

⇒ Isc =
IincWRNtar

2DL
sin

θ

2
. (5.7)

6 6

6 [20pts] Circular Slide

R θ

x

y g

M
m

The figure above shows a particle with mass m that slides on a frictionless circular slide. The circular slide has a
radius R. The circular slide is cut from a block of that slides without friction on a flat table. The mass of the circular
slide block is M . There is a uniform gravitational field with magnitude g.
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6.1 (10) Lagrangian

We define the x position of the center-of-mass, xcm, as

xcm ≡
m xm + M xM

m + M
(6.1)

where xm is the x position of the particle and xM is the x position of the center-of-mass of the block. Find the Lagrangian
of this system using the generalized coordinate variables xcm and θ, L(ẋcm, θ, θ̇). Hint: Start by writing T as a function of
the speeds of the two objects separately, keeping in mind that the particle moves in circular motion relative to the block.

? ?
6.1 solution

Rθ

x

y

~rm

The position of the particle, ~rm, is

~rm = (xM + R sin θ) x̂ + (R − R cos θ) ŷ ⇒ ~̇rm =
(

ẋM + Rθ̇ cos θ
)

x̂ +
(

Rθ̇ sin θ
)

ŷ (6.2)

⇒
(

~̇rm

)2

= ẋ2

M + R2θ̇2 + 2RẋM θ̇ cos θ . (6.3)

L = T − U = TM + Tm − U =
1

2
m

(

~̇rm

)2

+
1

2
Mẋ2

M − (−mgR cos θ)

=
1

2
mẋ2

M +
1

2
mR2θ̇2 + mRẋM θ̇ cos θ +

1

2
Mẋ2

M + mgR cos θ . (6.4)

Note that with the Lagrangian written in terms of variables xM , ẋM , θ, and θ̇ we will have coupled equations of motion
for xM and θ. We change variables to xcm, ẋcm, θ, and θ̇: From equation 6.1 and 6.2 we can solve for ẋM in terms of
ẋcm, θ, and θ̇ like so

(m + M)xcm = mxm + MxM = m (xM + R sin θ) + MxM = (m + M)xM + mR sin θ

⇒ (m + M)xM = (m + M)xcm − mR sin θ ⇒ xM = xcm −
m

m + M
R sin θ

⇒ ẋM = ẋcm −
m

m + M
Rθ̇ cos θ . (6.5)

So

L =
1

2
(m + M)

(

ẋcm −
m

m + M
Rθ̇ cos θ

)2

+
1

2
mR2θ̇2 + mR

(

ẋcm −
m

m + M
Rθ̇ cos θ

)

θ̇ cos θ + mgR cos θ

=
1

2
(m + M) ẋ2

cm +
1

2

m2

m + M
R2θ̇2 cos2 θ−mRẋcmθ̇ cos θ +

1

2
mR2θ̇2 +mRẋcmθ̇ cos θ−

m2

m + M
R2θ̇2 cos2 θ +mgR cos θ

⇒ L =
1

2
(m + M) ẋ2

cm −
1

2

m2

m + M
R2θ̇2 cos2 θ +

1

2
mR2θ̇2 + mgR cos θ . (6.6)

So we see that L is separable, and the xcm and θ motions are independent.

6 6
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6.2 (5) Differential Equation of Motion

From your Lagrangian, find the differential equations of motion for xcm and θ.

? ?
6.2 solution

For xcm

∂L

∂xcm

−
d

dt

∂L

∂ẋcm

= 0 ⇒
d

dt
[(m + M) ẋcm] = 0 ⇒ ẍcm = 0 . (6.7)

So the center-of-mass motion in the x direction is as expected.

∂L

∂θ
−

d

dt

∂L

∂θ̇
= 0 ⇒

m2

m + M
R2θ̇2 cos θ sin θ − mgR sin θ −

d

dt

(

−
m2

m + M
R2θ̇ cos2 θ + mR2θ̇

)

= 0

⇒
m2

m + M
R2θ̇2 cos θ sin θ − mgR sin θ −

(

−
m2

m + M
R2θ̈ cos2 θ + 2

m2

m + M
R2θ̇2 cos θ sin θ + mR2θ̈

)

= 0

⇒ mR2θ̈ −
m2

m + M
R2θ̈ cos2 θ +

m2

m + M
R2θ̇2 cos θ sin θ + mgR sin θ = 0 . (6.8)
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6.3 (5) Find the Angular Frequency of Small Oscillations

Find the angular frequency for small θ oscillations, ω0. Hint: θθ̇2 ≈ 0.

? ?
6.3 solution

For small oscillations

sin θ ≈ θ , cos θ ≈ 1 , and θθ̇2 ≈ 0 (6.9)

where we get θθ̇2 ≈ 0 because θ̇ is of size of order θ. Using this the equation of motion for θ (equation 6.8) becomes

mR2θ̈ −
m2

m + M
R2θ̈ + mgRθ = 0 ⇒

(

1 −
m

m + M

)

θ̈ +
g

R
θ = 0 ⇒ θ̈ = −

m + M

M

g

R
θ , (6.10)

which is the differential equation for simple harmonic motion with an angular frequency of

ω0 =

√

m + M

M

g

R
. (6.11)

Check limiting case, if M gets large, ω0 is like the angular frequency of a simple pendulum (with small oscillations) with
length R. When M is small ω0 gets large, which seems to make sense.

In PHYS 3356 you’ll learn an easier way to do this.

6 6


