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1 plane polar coordinates

The vector position of a particle in plane polar coordinates can be represented as ~r = rr̂, where r̂ is the unit vector in the
direction of increasing r at a given θ.
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1.1 velocity in plane polar coordinates

Show that the velocity of a particle in plane polar coordinates can be represented as ~̇r = ṙr̂ + rθ̇θ̂, where θ̂ is the unit
vector in the direction of increasing θ. Note: the direction of the r̂ and θ̂ change with the value of θ. r̂ is written as er,
and θ̂ is written as eθ, in section 1.14 of Thornton and Marion. Your instructor prefers the hat notion because it works
on the chalk board, and other reasons.

? ?
1.1 solution

x

y

r1

r2

∆r̂

r̂1

r̂1

r̂2

θ

∆
θ
≈ θ̇∆

t

∆θ

For a change in r r̂ does not change. From the figure above we see that for a small change θ, we call ∆θ, that r̂ changes
like ∆r̂

∆r̂ =

(

2 sin
∆θ

2

)

θ̂ ≈ 2
∆θ

2
θ̂ = ∆θθ̂, (1.1)

where we have used the fact that ∆θ
2 is a small angle. Dividing this by a small change in time ∆t gives

∆r̂

∆t
≈ ∆θ

∆t
θ̂. (1.2)
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We take the limit as ∆t → 0 giving

˙̂r =
dθ

dt
θ̂ = θ̇θ̂, (1.3)

where the ≈ becomes = because we have taken the limit ∆t → 0. So using the chain rule for differentiation on equation
1.1 we get

~̇r = ṙr̂ + rθ̇θ̂ (1.4)

6 6

1.2 acceleration in plane polar coordinates

Find the acceleration, ~̈r, of the particle in plane polar coordinates. Answer in terms of r and θ, and there first and second
time derivatives, r̂ and θ̂.

? ?
1.2 solution

x
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∆θ̂

θ̂1

θ̂1

θ̂2

θ

∆θ ≈
θ̇ ∆t

∆θ

First we will get
˙̂
θ. θ̂ does not change when r changes. The figure above shows how θ̂ changes with a small change in θ,

we call ∆θ.

∆θ̂ =

(

2 sin
∆θ

2

)

(−r̂) ≈ −2
∆θ

2
r̂ = −∆θr̂. (1.5)

Dividing this by a small change in time ∆t gives

∆θ̂

∆t
≈ −∆θ

∆t
r̂. (1.6)

We take the limit as ∆t goes to zero giving

˙̂
θ = −dθ

dt
r̂ = −θ̇r̂, (1.7)
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where the ≈ becomes = because we have taken the limit ∆t → 0. Differentiating equation 1.4 with respect to time, using
the chain rule, and equations 1.2 and 1.7 gives

~̈r =
d

dt

(

ṙr̂ + rθ̇θ̂
)

(1.8)

= r̈r̂ + ṙ ˙̂r + ṙθ̇θ̂ + rθ̈θ̂ + rθ̇
˙̂
θ (1.9)

= r̈r̂ + ṙθ̇θ̂ + ṙθ̇θ̂ + rθ̈θ̂ − rθ̇θ̇r̂ (1.10)

=
(

r̈ − rθ̇2
)

r̂ +
(

2ṙθ̇ + rθ̈
)

θ̂ (1.11)

So we have ~̈r = (r̈ − rθ̇2) r̂ + (rθ̈ + 2ṙθ̇) θ̂ like in equation 1.98 in the Thornton and Marion text.

6 6

2 review - free fall with no air drag

A projectile is fired from the base of an inclined plane up the inclined plane. The initial velocity of the projectile is v0 at
an angle α measured from the horizontal. The angle of slope of the inclined plane is β where, β < α. Find the time t1,
from when the projectile is fired, for the projectile to impact the inclined plane.

? ?
2.0 solution

The equations of motion for the projectile can be written as

x = vx0t (2.1)

y = vy0t −
1

2
gt2, (2.2)

where vx0 = v0 cosα, vy0 = v0 sinα, and t is time measured from when the projectile was at the origin.
The equation for the line of the inclined plane is

y = x tan β. (2.3)

Putting together equations 2.1, 2.2, and 2.3 at t = t1 gives

vy0t1 −
1

2
gt21 = (vx0t1) tanβ (2.4)

⇒
[

(vy0 − vx0 tanβ) − 1

2
gt1

]

t1 = 0 (2.5)
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which has the two solutions for t1,

t1 = 0 (2.6)

t1 =
2

g
(vy0 − vx0 tanβ) =

2v0

g
(sin α − cosα tan β) . (2.7)

So the solution of interest is t1 = 2v0

g
(sin α − cosα tan β) .

6 6

3 more free fall with no air drag

3.1

Find the largest angle, αm, as measured from the horizontal, with which a particle can be projected such that the distance
from the launch point to the particle will always be increasing. See the figure below. Note: If, when solving this problem,
you find that the statement of this problem is a little inconsistent (as your instructor did), have a look at the next part
of this problem.
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Case where r is always in-
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Case where r is not always
increasing with time, α >

αm

? ?
3.1 solution

Setting the release point to the origin gives the following equations of motion for the projectile

x = vx0t (3.1)

y = vy0t −
1

2
gt2, (3.2)

where vx0 = v0 cosα, vy0 = v0 sin α, α is the launch angle as measured from the horizontal, and v0 is the initial speed of
the projectile.

Let r be the distance to the projectile from the point of release. So

r2 = x2 + y2 (3.3)

= (vx0t)
2

+

(

vy0t −
1

2
gt2
)2

(3.4)

=
(

v2
x0 + v2

y0

)

t2 − vy0gt3 +
1

4
g2t4 (3.5)

= v2
0t2 − vy0gt3 +

1

4
g2t4. (3.6)
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If r is always increasing with time than we must have
d(r2)

dt
> 0, which from equation 3.6 gives

(

2v2
0 − 3vy0gt + g2t2

)

t > 0 (3.7)

⇒ g2t

(

t2 − 3
vy0

g
t + 2

v2
0

g2

)

> 0. (3.8)

We can use the quadratic formula to factor the expression in parentheses in 3.8 to give the expression

g2t (t − t+) (t − t−) > 0, (3.9)

where

t± =
3

vy0

g
±
√

9
v2

y0

g2 − 8
v2

0

g2

2
(3.10)

=
v0

2g

(

3 sinα ±
√

9 sin2 α − 8
)

. (3.11)

t± from equation 3.11 can only be a solution to expression 3.9 if 9 sin2 α < 8, so that t+ and t− are complex, and
complex conjugates of each other. In the limiting case when 9 sin2 α = 8 the inequality in expressions 3.9 and the limiting

angle of interest is αm = arcsin 2
√

2
3 ' 70.53o .
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3.2

Explain why your instructor feels that the problem in subsection 3.1, which was restated from Thornton & Marion problem
2-19, should be rewritten as: Find the angle, αm, as measured from the horizontal, below which a particle can be projected
such that the distance from the launch point to the particle will always be increasing for all time after the particle is
released.

? ?
3.2 solution

Expression 3.8 is satisfied for all t greater than 0 so long as sin2 α < 8
9 . When α = αm, or sin2 α = 8

9 , there will

be an instant in time,
√

2 v0

g
, when d(r2)

dt
, and also dr

dt
, is zero, and so r is not increasing at time

√
2 v0

g
, as illustrated in

the plot below, and so the distance from the launch point to the particle will not always be increasing when α = αm, but
will always be increasing when α < αm. Also at t = 0 the distance from the launch point to the particle is not increasing.

d(r2)
dt

= g2t (t − t+) (t − t−)

t

�
�

�	

α < αm (1 root)

�
�

�	

α = αm (2 roots)

�
�

�	

α > αm (3 roots)

u u u u
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4 how high with v
2 air drag?

A ball traveling through a fluid (kind of like air) has a drag force that is proportional to the square of the speed of the
ball. Near the surface of the earth the terminal speed of the free falling ball is vt. The ball is thrown straight up with an
initial speed of v0.

4.1 how high?

Find h, how high from the point of release that the ball will travel. Answer in terms of vt, v0, and g, the acceleration due
to gravity.

? ?
4.1 solution

We will write the ordinary differential equation of motion for the ball, integrate it twice to find first the velocity of
the ball v(t) and then the height of the ball y(t), find the time t1 at which the velocity of the ball is zero, v(t1) ≡ 0, and
finally plug that time, t1, into the height of the ball to give the maximum height of the ball h = y(t1).

Newton’s 2nd law for the ball as it is going up can be written as

mv̇ = −mg − bv2, (4.1)

where m is the mass of the ball, v is the velocity of the ball dy
dt

with the positive y direction being up, and b is the
proportionality constant for the fluid drag force.

We can find b as a function of given parameters by the definition of terminal velocity being the speed of the ball when
it has been falling a long time and it is traveling at a constant speed of vt. Newton’s 2nd law for the ball when it is
traveling at vt is

mv̇ = 0 = −mg + bv2
t , (4.2)

where the sign of the drag force is now positive because the ball is moving down, and the drag force is always in the
direction opposite to the direction of ~v, the velocity of the ball. This gives

b = m
g

v2
t

. (4.3)

So equation 4.1 may now be written as

mv̇ = −mg −
(

m
g

v2
t

)

v2 (4.4)

⇒ v̇ = −g − g

v2
t

v2 (4.5)

⇒
dv
dt

dt

g + g

v2

t

v2
= −dt (4.6)

which we solve for v(t) giving

∫ v

v′=v0

dv′

g + g

v2

t

v′2
= −

∫ t

t′=0

dt′ (4.7)

⇒
∫ v

v′=v0

dv′

v2
t + v′2

= − g

v2
t

∫ t

t′=0

dt′ (4.8)

⇒
∫ v

v′=v0

dv′

v2
t + v′2

= − g

v2
t

t (4.9)

From integral tables we have

∫

dx

a2 + x2
=

1

a
tan−1 x

a
, (4.10)
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which we can use to solve the integral in equation 4.9 to get

1

vt

tan−1 v′

vt

∣

∣

∣

∣

v

v′=v0

= − g

v2
t

t (4.11)

⇒ tan−1 v

vt

− tan−1 v0

vt

= − g

vt

t (4.12)

⇒ v(t) = vt tan

(

tan−1 v0

vt

− g

vt

t

)

. (4.13)

We can integrate v(t) while setting the initial height to zero giving

y(t) =

∫ t

t′=0

v(t′)dt (4.14)

=

∫ t

t′=0

vt tan

(

tan−1 v0

vt

− g

vt

t′
)

dt′. (4.15)

From integral tables we have
∫

tan axdx = −1

a
ln cosax, (4.16)

and with the substitution

x = tan−1 v0

vt

− g

vt

t′ (4.17)

dx = − g

vt

dt′ (4.18)

a = 1 (4.19)

t′ = 0 ⇒ x = tan−1 v0

vt

(4.20)

t′ = t ⇒ x = tan−1 v0

vt

− g

vt

t (4.21)

we have

y(t) = −v2
t

g

∫ tan−1 v0

vt
− g

vt
t

x=tan−1
v0

vt

tan xdx (4.22)

= −v2
t

g
[− ln (cosx)]|tan

−1 v0

vt
− g

vt
t

x=tan−1
v0

vt

(4.23)

= −v2
t

g

{

ln

[

cos

(

tan−1 v0

vt

)]

− ln

[

cos

(

tan−1 v0

vt

− g

vt

t

)]}

. (4.24)

We find the time at which the ball is at the top of it’s path by setting v(t = t1) = 0 in equation 4.13 to give

tan−1 v0

vt

− g

vt

t1 = 0. (4.25)

Plugging this value of time t = t1 into y(t) in equation 4.24 gives

h = y(t1) (4.26)

= −v2
t

g

{

ln

[

cos

(

tan−1 v0

vt

)]

− ln [cos (0)]

}

(4.27)

= −v2
t

g
ln

(

vt
√

v2
t + v2

0

)

. (4.28)

which gives h = − v2

t

g
ln

(

vt√
v2

t +v2

0

)

.

6 6
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4.2 limiting case

Show that your result, h, from subsection 4.1 is the same as the case when there is no drag by taking the limit when vt

goes to infinity of the expression that you got for h in subsection 4.1.

? ?
4.2 solution

For the case with no drag, with the initial condition y(t = 0) = 0,

y(t) = v0t −
1

2
gt2 (4.29)

v(t) = v0 − gt, (4.30)

where v ≡ dy
dt

and v0 is the initial value of dy
dt

. At the top of the path

v(t1) = 0 (4.31)

= v0 − gt1 (4.32)

⇒ t1 =
v0

g
. (4.33)

Plugging t → t1 into y(t) in equation 4.29 gives h

h = y(t1) (4.34)

= v0

(

v0

g

)

− 1

2
g

(

v0

g

)2

(4.35)

=
1

2

v2
0

g
. (4.36)

We can rewrite equation 4.28 as

h = −v2
t

g
ln







√

√

√

√

1

1 +
v2

0

v2

t






. (4.37)

We note that when vt

v0

is large that
v2

0

v2

t

will be small, so we expand the square root ([1 + x]
− 1

2 ≈ 1− 1
2x) in equation about

small (x =)
v2

0

v2

t

giving

h = −v2
t

g
ln

(

1 − 1

2

v2
0

v2
t

)

(4.38)

and expanding the ln (ln[1 + x] ≈ x) about small (x =) 1
2

v2

0

v2

t

gives

h = −v2
t

g

(

−1

2

v2
0

v2
t

)

(4.39)

=
1

2

v2
0

g
(4.40)

which is the same as the height, h, in the case with no drag force in equation 4.36.
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