
HW02: Newtonian Mechanics, Phys3355, Fall 2005, with solution 1

This starts with an exercise that walks you through a problem. It’s a little different format from the last homework.

A particle of mass m moves in one dimension, r, with the following potential energy

U(r) = ar +
b

r2
, (0.1)

where a and b are positive constants, and the position of the particle, r, is always positive.

1 Force (10 pts)

Find the force, F (r), from this potential as a function of r.

? ?
1.0 solution

F (r) = −
∂U(r)

∂r
⇒ F (r) = −a +

2b

r3
(1.1)
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2 Equilibrium Position (5 pts)

Find r0, the one equilibrium r position of the particle as a function of a and b.

? ?
2.0 solution

F (r0) = 0 ⇒ −a +
2b

r3
0

= 0 ⇒ r0 =
3

√

2b

a
(2.1)
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3 Scale U(r) (10 pts)

Rewrite U(r) replacing parameters a and b with parameters r0 and U0 ≡ U(r = r0).

? ?
3.0 solution

From the definition of U0 and equation 2.1 we have the two equations

U0 = r0a +
1

r2
0

b (3.1)

0 = −a +
2

r3
0

b (3.2)

which we can solve for a and b in terms of U0 and r0 giving

a =
2

3

U0

r0
(3.3)

b =
1

3
U0r

2
0 (3.4)
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which with equation 0.1 gives

U(r) = U0

[

2

3

r

r0
+

1

3

(r0

r

)2
]

(3.5)
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4 Plot U(r) (10 pts)

Note that the shape of the function U(r) does not change with the parameters U0 and r0, it just gets scaled along the

U -direction with the value of U0, and along the r-direction with the value of r0. Make a plot of U(r)
U0

as a function of r
r0

.

? ?
4.0 solution
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5 Expanding about the Equilibrium Position (10 pts)

When the particle is displaced a small amount from r0 in the positive r direction or the negative r direction it is pushed
back to r = r0 by the force from this potential. We call this equilibrium position, r = r0, a stable equilibrium position.
The shape of U(r) at, or near, r = r0, is concave up, like a valley.

Expand U(r) as a Taylor series about r = r0 up to, and including, the (r − r0)
2 term. Answer in terms of U0, r0, and

r. Recall that a Taylor series expansion has the form

U(r) ≈

N
∑

n=0

(r − r0)
n

n!

dnU(r?)

dr?
n

∣

∣

∣

∣

r?=r0

. (5.1)
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? ?
5.0 solution

U(r) ≈ U(r0) + U ′(r0) [r − r0] +
1

2
U ′′(r0) [r − r0]

2
= U0 +

U0

r2
0

(r − r0)
2

(5.2)

therefore

U(r) ≈ U0 +
U0

r2
0

(r − r0)
2

. (5.3)
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6 Small Oscillations about the Equilibrium Position (10 pts)

Note that when U(r) is expanded about r = r0 to (r−r0)
2 it has the same form as the potential for a 1-D simple harmonic

oscillator

U(x) = C +
1

2
kx2, (6.1)

where x = r − r0, C is a constant, and k is the spring constant.

6.1

For our potential, U(r), what is the spring constant, k, when we are near r = r0? Answer in terms of constants U0 and
r0.

? ?
6.1 solution

By inspection of equation 5.2 with 6.1

k =
2U0

r2
0

. (6.2)
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6.2

What will be the angular frequency of oscillation, ω0, of the particle about the equilibrium position r = r0? Express
your answer in terms of U0, r0 and m. Recall that the angular frequency of oscillation for simple harmonic oscillator is

ω0 =
√

k
m

, where k is the spring force constant and m is the mass.
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? ?
6.2 solution

ω0 =

√

k

m
=

√

2U0

mr2
0

(6.3)

therefore

ω0 =

√

2U0

mr2
0

. (6.4)
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7 Another Way (15 pts)

7.1 Equation of Motion (5)

Write the equation of motion of the particle in this 1-D potential. Express your answer in terms of U0, r0, m, (without
a and b) and r and its time derivatives. So your answer should be of the form mr̈ = f(r), where f(r) is the force as a
function of variable r and parameters U0 and r0.

? ?
7.1 solution

From equations 1.1, 3.3, 3.4 and Newton’s 2nd law we have

F (r) = −a +
2b

r3
⇒ mr̈ = −

2

3

U0

r0
+

2

3
U0

r2
0

r3
. (7.1)
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7.2 Expand the Equation of Motion about the Equilibrium Position (10)

Expand the equation of motion about the equilibrium position, r0, by making the substitution r ≡ r0 + η, where η is
small compared to r0, and show that the equation of motion of η is that of simple harmonic motion, η̈ = −ω2

0η, where
ω0 is the constant angular frequency that is a function of the constant parameters U0 and r0. Recall the binomial series
expansion (1 + x)n ≈ 1 + nx for small x, of course using Taylor series should give the same result.

? ?
7.2 solution

r = r0 + η ⇒ r̈ = η̈ (7.2)

1

r3
=

1

(r0 + η)3
=

1

r0
3
(

1 + η
r0

)3 =
1

r0
3

(

1 +
η

r0

)

−3

≈
1

r0
3

(

1 − 3
η

r0

)

(7.3)

Combining this with the equation of motion (equation 7.1) gives

m η̈ = −
2

3

U0

r0
+

2

3
U0r

2
0

[

1

r0
3

(

1 − 3
η

r0

)]

⇒ m η̈ = −
2U0

r2
0

η ⇒ η̈ = −
2U0

mr2
0

η (7.4)
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which has a constant angular frequency

ω0 =

√

2U0

mr2
0

(7.5)

as before.
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8 A Different Problem (15 pts)

A particle, with mass m, is under the influence of a force F = −kx + k x3

α2 , where k and α are constants, and k is positive.
Determine the potential U(x), such that U(0) = 0. Plot a scaled version of U(x), and discuss the motion. What happens
when the total energy (potential plus kinetic) is E = 1

4kα2?

? ?
8.0 solution

U(x) = −

∫
(

−kx + k
x3

α2

)

dx (8.1)

=
1

2
kx2

−
1

4

k

α2
x4, (8.2)

where we have set the constant of integration to zero.

We can plot U
1

4
kα2

= 2
(

x
α

)2
−

(

x
α

)4
as a function of x
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We find equilibrium positions from setting F (x = x0) = 0 giving us

−kx0 + k
x3

0

α2
= 0 (8.3)

⇒ x0 (x0 − α) (x0 + α) = 0 (8.4)

⇒ x0 = 0,±α. (8.5)
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We can see from the plot that x0 = 0 is a stable equilibrium position and x0 = ±α are unstable equilibrium positions.
The total energy, E = 1

2mẋ + U(x), is a constant of the motion. For the case where the total energy E is such that
E > 1

4kα2 the particle motion will be unbounded for all initial x positions. For the case where the total energy is such
that 0 < E < 1

4kα2 the particle will be pushed to −∞ as time goes to ∞ if it starts with x < −α, the particle will be
pushed to +∞ as time goes to ∞ if it starts with x > α, and the particle motion will be periodic and bounded if it starts
with −α < x < α. For the case where the total energy is such that E < 0,

• a x position where U > E is forbidden,

• if x > 0 the motion of x is unbounded going to +∞, and

• if x < 0 x goes to −∞ as time goes to ∞.

[extra] You may have found that the frequency of small oscillations about x = 0, the stable equilibrium position, is
√

k
m

. The k x3

α2 force term causes the frequency to decrease with increasing amplitude.
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9 Stability (15 pts)

When considering a particle, constrained to move in the x-direction, acted on by a potential U(x), how do we determine

when the an equilibrium position x0, defined by Fx(x0) = − ∂U
∂x

∣

∣

x=x0

= 0, is stable, unstable, or neutral, when ∂nU
∂xn

∣

∣

x=x0

=
0 for n = 1 to m where m ≥ 2? You may assume that U(x) and all it derivatives are continuous functions.

? ?
9.0 solution

We assume that we can expand U(x) in a Taylor series so

U(x) ≈

N
∑

n=0

(x − x0)
n

n!

dnU(x?)

dx?
n

∣

∣

∣

∣

x?=x0

, (9.1)

where N > m. The stability of U at x = x0 will depend on the first (smallest n) nonzero coefficient in the Taylor series,
not including n = 0. If the first n is odd the potential U(x) will be unstable at x = x0. The figure below shows a cases
there U ∝ x5 and U ∝ x3. The figure shows how a particle would slide away in the minus x-direction and be contained
in the plus x-direction.
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If the first nonzero coefficient in the Taylor series has an n that is even the potential U(x) will be stable at x = x0 if

the coefficient dnU(x?)
dx?

n

∣

∣

∣

x?=x0

is greater than zero and unstable if it’s less than zero. The figure below shows a case there

U ∝ x6.
In conclusion, U(x) will be

stable only when the first nonzero derivative of U(x) ( dkU(x?)

dx?
k

∣

∣

∣

x?=x0

> 0) is an even number of derivatives (k even) and

has a positive value when evaluated at x = x0,

neutrally stable if U(x) is constant and all coefficients in the Taylor series expansion are zero except the n = 0 term,
and

unstable otherwise.
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