This starts with an exercise that walks you through a problem. It's a little different format from the last homework.

A particle of mass m moves in one dimension, r, with the following potential energy

$$U(r) = ar + \frac{b}{r^2},\tag{0.1}$$

where a and b are positive constants, and the position of the particle, r, is always positive.

1 Force (10 pts)

Find the force, F(r), from this potential as a function of r.

$$F(r) = -\frac{\partial U(r)}{\partial r} \quad \Rightarrow \quad F(r) = -a + \frac{2b}{r^3}$$
(1.1)

2 Equilibrium Position (5 pts)

Find r_0 , the one equilibrium r position of the particle as a function of a and b.

$$F(r_0) = 0 \qquad \Rightarrow \qquad -a + \frac{2b}{r_0^3} = 0 \qquad \Rightarrow \qquad \boxed{r_0 = \sqrt[3]{\frac{2b}{a}}}$$
(2.1)

3 Scale U(r) (10 pts)

Rewrite U(r) replacing parameters a and b with parameters r_0 and $U_0 \equiv U(r = r_0)$.

From the definition of U_0 and equation 2.1 we have the two equations

$$U_{0} = r_{0}a + \frac{1}{r_{0}^{2}}b$$

$$0 = -a + \frac{2}{r_{0}^{3}}b$$
(3.1)
(3.2)

which we can solve for a and b in terms of U_0 and r_0 giving

$$a = \frac{2}{3} \frac{U_0}{r_0} \tag{3.3}$$

$$b = \frac{1}{3}U_0 r_0^2 \tag{3.4}$$

which with equation 0.1 gives

$$U(r) = U_0 \left[\frac{2}{3} \frac{r}{r_0} + \frac{1}{3} \left(\frac{r_0}{r} \right)^2 \right]$$

4 Plot U(r) (10 pts)

Note that the shape of the function U(r) does not change with the parameters U_0 and r_0 , it just gets scaled along the U-direction with the value of r_0 . Make a plot of $\frac{U(r)}{U_0}$ as a function of $\frac{r}{r_0}$.

5 Expanding about the Equilibrium Position (10 pts)

When the particle is displaced a small amount from r_0 in the positive r direction or the negative r direction it is pushed back to $r = r_0$ by the force from this potential. We call this equilibrium position, $r = r_0$, a stable equilibrium position. The shape of U(r) at, or near, $r = r_0$, is concave up, like a valley.

Expand U(r) as a Taylor series about $r = r_0$ up to, and including, the $(r - r_0)^2$ term. Answer in terms of U_0 , r_0 , and r. Recall that a Taylor series expansion has the form

$$U(r) \approx \sum_{n=0}^{N} \frac{(r-r_0)^n}{n!} \left. \frac{\mathrm{d}^n U(r_\star)}{\mathrm{d}r_\star^n} \right|^{r_\star = r_0}.$$
(5.1)

(3.5)

therefore

$$U(r) \approx U_0 + \frac{U_0}{r_0^2} \left(r - r_0\right)^2.$$
(5.3)

6 Small Oscillations about the Equilibrium Position (10 pts)

Note that when U(r) is expanded about $r = r_0$ to $(r - r_0)^2$ it has the same form as the potential for a 1-D simple harmonic oscillator

$$U(x) = C + \frac{1}{2}kx^2,$$
(6.1)

where $x = r - r_0$, C is a constant, and k is the spring constant.

6.1

For our potential, U(r), what is the spring constant, k, when we are near $r = r_0$? Answer in terms of constants U_0 and r_0 .

Ł

6.1 solution

By inspection of equation 5.2 with 6.1

$$k = \frac{2U_0}{r_0^2}$$

Ł

6.2

What will be the angular frequency of oscillation, ω_0 , of the particle about the equilibrium position $r = r_0$? Express your answer in terms of U_0 , r_0 and m. Recall that the angular frequency of oscillation for simple harmonic oscillator is $\omega_0 = \sqrt{\frac{k}{m}}$, where k is the spring force constant and m is the mass.

(6.2)

7 Another Way (15 pts)

7.1 Equation of Motion (5)

Write the equation of motion of the particle in this 1-D potential. Express your answer in terms of U_0 , r_0 , m, (without a and b) and r and its time derivatives. So your answer should be of the form $m\ddot{r} = f(r)$, where f(r) is the force as a function of variable r and parameters U_0 and r_0 .

From equations 1.1, 3.3, 3.4 and Newton's 2nd law we have

$$F(r) = -a + \frac{2b}{r^3} \qquad \Rightarrow \qquad m\ddot{r} = -\frac{2}{3}\frac{U_0}{r_0} + \frac{2}{3}U_0\frac{r_0^2}{r^3}.$$
(7.1)

7.2 Expand the Equation of Motion about the Equilibrium Position (10)

Expand the equation of motion about the equilibrium position, r_0 , by making the substitution $r \equiv r_0 + \eta$, where η is small compared to r_0 , and show that the equation of motion of η is that of simple harmonic motion, $\ddot{\eta} = -\omega_0^2 \eta$, where ω_0 is the constant angular frequency that is a function of the constant parameters U_0 and r_0 . Recall the binomial series expansion $(1 + x)^n \approx 1 + nx$ for small x, of course using Taylor series should give the same result.

$$7.2 \text{ solution}$$

$$r = r_0 + \eta \quad \Rightarrow \quad \ddot{r} = \ddot{\eta}$$

$$\frac{1}{r^3} = \frac{1}{(r_0 + \eta)^3} = \frac{1}{r_0^3 \left(1 + \frac{\eta}{r_0}\right)^3} = \frac{1}{r_0^3} \left(1 + \frac{\eta}{r_0}\right)^{-3} \approx \frac{1}{r_0^3} \left(1 - 3\frac{\eta}{r_0}\right)$$

$$(7.2)$$

$$(7.3)$$

Combining this with the equation of motion (equation 7.1) gives

$$m \ddot{\eta} = -\frac{2}{3} \frac{U_0}{r_0} + \frac{2}{3} U_0 r_0^2 \left[\frac{1}{r_0^3} \left(1 - 3\frac{\eta}{r_0} \right) \right] \qquad \Rightarrow \qquad m \ddot{\eta} = -\frac{2U_0}{r_0^2} \eta \qquad \Rightarrow \qquad \left[\ddot{\eta} = -\frac{2U_0}{mr_0^2} \eta \right]$$
(7.4)

which has a constant angular frequency

$$\omega_0 = \sqrt{\frac{2U_0}{mr_0^2}}$$

as before.

A Different Problem (15 pts) 8

A particle, with mass m, is under the influence of a force $F = -kx + k\frac{x^3}{\alpha^2}$, where k and α are constants, and k is positive. Determine the potential U(x), such that U(0) = 0. Plot a scaled version of U(x), and discuss the motion. What happens when the total energy (potential plus kinetic) is $E = \frac{1}{4}k\alpha^2$?

where we have set the constant of integration to zero. We can plot $\frac{U}{\frac{1}{4}k\alpha^2} = 2\left(\frac{x}{\alpha}\right)^2 - \left(\frac{x}{\alpha}\right)^4$ as a function of $\frac{x}{\alpha}$

We find equilibrium positions from setting $F(x = x_0) = 0$ giving us

$$-kx_0 + k\frac{x_0^3}{\alpha^2} = 0 \tag{8.3}$$

$$\Rightarrow \quad x_0 \left(x_0 - \alpha \right) \left(x_0 + \alpha \right) = 0 \tag{8.4}$$

$$\Rightarrow \quad x_0 = 0, \pm \alpha. \tag{8.5}$$

(7.5)

We can see from the plot that $x_0 = 0$ is a stable equilibrium position and $x_0 = \pm \alpha$ are unstable equilibrium positions.

The total energy, $E = \frac{1}{2}m\dot{x} + U(x)$, is a constant of the motion. For the case where the total energy E is such that $E > \frac{1}{4}k\alpha^2$ the particle motion will be unbounded for all initial x positions. For the case where the total energy is such that $0 < E < \frac{1}{4}k\alpha^2$ the particle will be pushed to $-\infty$ as time goes to ∞ if it starts with $x < -\alpha$, the particle will be pushed to $+\infty$ as time goes to ∞ if it starts with $x < -\alpha$, the particle will be pushed to $+\infty$ as time goes to ∞ . For the case where the total energy is such that $-\alpha < x < \alpha$. For the case where the total energy is such that E < 0,

- a x position where U > E is forbidden,
- if x > 0 the motion of x is unbounded going to $+\infty$, and
- if x < 0 x goes to $-\infty$ as time goes to ∞ .

[*extra*] You may have found that the frequency of small oscillations about x = 0, the stable equilibrium position, is $\sqrt{\frac{k}{m}}$. The $k\frac{x^3}{\alpha^2}$ force term causes the frequency to decrease with increasing amplitude.

9 Stability (15 pts)

When considering a particle, constrained to move in the x-direction, acted on by a potential U(x), how do we determine when the an equilibrium position x_0 , defined by $F_x(x_0) = -\frac{\partial U}{\partial x}\Big|_{x=x_0}^{x=x_0} = 0$, is stable, unstable, or neutral, when $\frac{\partial^n U}{\partial x^n}\Big|_{x=x_0}^{x=x_0} = 0$ for n = 1 to m where $m \ge 2$? You may assume that U(x) and all it derivatives are continuous functions.

We assume that we can expand U(x) in a Taylor series so

$$U(x) \approx \sum_{n=0}^{N} \frac{(x-x_0)^n}{n!} \left. \frac{\mathrm{d}^n U(x_\star)}{\mathrm{d}x_\star^n} \right|^{x_\star = x_0},\tag{9.1}$$

where N > m. The stability of U at $x = x_0$ will depend on the first (smallest n) nonzero coefficient in the Taylor series, not including n = 0. If the first n is odd the potential U(x) will be unstable at $x = x_0$. The figure below shows a cases there $U \propto x^5$ and $U \propto x^3$. The figure shows how a particle would slide away in the minus x-direction and be contained in the plus x-direction.

If the first nonzero coefficient in the Taylor series has an n that is even the potential U(x) will be stable at $x = x_0$ if the coefficient $\frac{\mathrm{d}^n U(x_*)}{\mathrm{d}x_*^n}\Big|^{x_*=x_0}$ is greater than zero and unstable if it's less than zero. The figure below shows a case there $U \propto x^6$.

In conclusion, U(x) will be

- **stable** only when the first nonzero derivative of $U(x) \left(\frac{d^k U(x_\star)}{dx_\star^k} \right|^{x_\star = x_0} > 0$) is an even number of derivatives (k even) and has a positive value when evaluated at $x = x_0$,
- **neutrally** stable if U(x) is constant and all coefficients in the Taylor series expansion are zero except the n = 0 term, and

unstable otherwise.

