HWO02: Newtonian Mechanics, Phys3355, Fall 2005, with solution

This starts with an exercise that walks you through a problem. It’s a little different format from the last homework.

A particle of mass m moves in one dimension, r, with the following potential energy

b
U(r) =ar+ ok

where a and b are positive constants, and the position of the particle, r, is always positive.

1 Force (10 pts)

Find the force, F(r), from this potential as a function of r.

(0.1)

* | 1.0 solution

(1.1)

2 Equilibrium Position (5 pts)

Find rg, the one equilibrium r position of the particle as a function of a and b.

* | 2.0 solution |
2b b
F(To): = —a+—3=0 = 7’0:3—
L a

(2.1)

3 Scale U(r) (o0 pts)

Rewrite U(r) replacing parameters a and b with parameters ro and Uy = U(r = ro).

* | 3.0 solution |

From the definition of Uy and equation 2.1 we have the two equations

1
Uy = ropa+ —2b
7o
2
0 = —a+ —3b
To

which we can solve for @ and b in terms of Uy and 7y giving

200
3 To

1

b = gUOTg

(3.3)

(3.4)
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which with equation 0.1 gives

U(r) = U [;% + % (7;—0)2] (3.5)

4 Plot U(r) o pts)

Note that the shape of the function U(r) does not change with the parameters Uy and rg, it just gets scaled along the
U-direction with the value of Uy, and along the r-direction with the value of ry. Make a plot of %g) as a function of %

* | 4.0 solution | *

plot of U(r) = Uy [%L + % (%})2}

0

Sl=

5 Expanding about the Equilibrium Position (10 pts)

When the particle is displaced a small amount from rg in the positive r direction or the negative r direction it is pushed
back to r = r¢ by the force from this potential. We call this equilibrium position, r = r¢, a stable equilibrium position.
The shape of U(r) at, or near, r = r¢, is concave up, like a valley.

Expand U(r) as a Taylor series about r = rg up to, and including, the (r —79)? term. Answer in terms of Uy, g, and
r. Recall that a Taylor series expansion has the form

N n n r Tx»=T0
Uy~ (r = ro)* d"U(r) . (5.1)

n! dr, "
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[ 5.0 solution |

Ur) & Ulro) + U (r0) Ir = 1ol + 50" 1) lr = ol = U + 22 (1 = o)’

therefore

Sl=

Sl=

0

(5.2)

(5.3)

plot of U(r) = U [ 37 + 3 (3)°] and = Uy + L (r = ro)?
) | | : : :
4r exact U — i
approximate U near r =r¢g - - - - -
3 -
2 =
1 -
0 l L | | |
0 0.5 1 1.5 2 2.5 3
v
zooming in to r =1y
1.05 | | :
1.04 - .
103 - exact U —— A
approximate U near r =rg - - - - - _

1.02 - ._./-/'// _
1.01 _/./;/"‘// _

1 B — —
0.99 l ! L | | I

0.8 0.85 0.9 0.95 1.05 1.1 1.15 1.9



HWO02: Newtonian Mechanics, Phys3355, Fall 2005, with solution 4

zooming in more

|
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6 Small Oscillations about the Equilibrium Position (10 pts)

Note that when U(r) is expanded about r = 7 to (r —7()? it has the same form as the potential for a 1-D simple harmonic
oscillator

U(x)=C+ %kx2, (6.1)

where x = r — rg, C is a constant, and k is the spring constant.

6.1

For our potential, U(r), what is the spring constant, k, when we are near r = r¢? Answer in terms of constants Uy and
To.

* | 6.1 solution | *

By inspection of equation 5.2 with 6.1

=220 (6.2)

2
o

6.2

What will be the angular frequency of oscillation, wg, of the particle about the equilibrium position r = o7 Express
your answer in terms of Uy, g and m. Recall that the angular frequency of oscillation for simple harmonic oscillator is

wo = \/%, where k is the spring force constant and m is the mass.



HWO02: Newtonian Mechanics, Phys3355, Fall 2005, with solution 5

* | 6.2 solution *
|k 20,
p— —_— = —_— 6'3
o m \/ mrd (6.3)
therefore

[ 2Uy
wo ng (6 )

7 Another Way (5 pts)

7.1 Equation of Motion (5)

Write the equation of motion of the particle in this 1-D potential. Express your answer in terms of Uy, 79, m, (without
a and b) and r and its time derivatives. So your answer should be of the form m# = f(r), where f(r) is the force as a
function of variable r and parameters Uy and rg.

* | 7.1 solution | *

From equations 1.1, 3.3, 3.4 and Newton’s 2nd law we have

2b 2 2 2
F(r)y=—a+— = mi":——%—i——UQT—O

r3 3rg 3 3

7.2 Expand the Equation of Motion about the Equilibrium Position (10)

Expand the equation of motion about the equilibrium position, r¢, by making the substitution r = r¢ + 7, where 7 is
small compared to 7o, and show that the equation of motion of 1 is that of simple harmonic motion, 7 = —w2n, where
wp is the constant angular frequency that is a function of the constant parameters Uy and rg. Recall the binomial series
expansion (1 + x)"™ ~ 1 + nx for small z, of course using Taylor series should give the same result.

* | 7.2 solution | *
r=ro+n = P =1j (7.2)
1 1 1 1 B!
== .= 3=—3<1+ﬁ) ~_3(1—31> (7.3)
T (ro+mn) ro? (1 i %) ro ro 0 To

Combining this with the equation of motion (equation 7.1) gives

200 2. 5[ 1 n 20Uy 200
=—-— U — (1-3— = = —— =—— 7.4

mij= =320 4 vt | 2 (132 mij= =23ty = (7.4)
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which has a constant angular frequency

wo = 1| Do (7.5)
mTO

as before.

{ }

8 A Different Problem @5 pts)

A particle, with mass m, is under the influence of a force F' = —kx + ki—z, where k and « are constants, and k is positive.
Determine the potential U(z), such that U(0) = 0. Plot a scaled version of U(z), and discuss the motion. What happens
when the total energy (potential plus kinetic) is E = tka??

* | 8.0 solution | *
3
Ulx) = —/(—kx+k—2> dz (8.1)
1, 5 1k 4
= = ——— 2
2kx 152 (8.2)

where we have set the constant of integration to zero.

2 4 .
We can plot ﬁ =2 (%) — (%) as a function of £

1.2 ' -
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We find equilibrium positions from setting F'(z = () = 0 giving us

3

—kzo+ kS =0 8.3)

a
= xo (ro — ) (kg + ) =0 (8.4)
= zo =0, £a. (8.5)
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We can see from the plot that xg = 0 is a stable equilibrium position and xy = +« are unstable equilibrium positions.

The total energy, £ = %ma’c + U(xz), is a constant of the motion. For the case where the total energy E is such that
E > ikoﬁ the particle motion will be unbounded for all initial = positions. For the case where the total energy is such
that 0 < F < ikoﬁ the particle will be pushed to —oo as time goes to oo if it starts with * < —a, the particle will be
pushed to +o00 as time goes to oo if it starts with > «a, and the particle motion will be periodic and bounded if it starts
with —a < x < «a. For the case where the total energy is such that £ < 0,

e a x position where U > F is forbidden,

e if x > 0 the motion of z is unbounded going to +oo, and

o if x < 0 2 goes to —oo as time goes to oco.

[extra] You may have found that the frequency of small oscillations about z = 0, the stable equilibrium position, is

%. The kz—z force term causes the frequency to decrease with increasing amplitude.

9 Stability (15 pts)

When considering a particle, constrained to move in the a-direction, acted on by a potential U(x), how do we determine

when the an equilibrium position x, defined by F,(zg) = — %—g |m:w° = 0, is stable, unstable, or neutral, when ?;;[,{ TR =
0 for n = 1 to m where m > 2?7 You may assume that U(z) and all it derivatives are continuous functions.
* | 9.0 solution | *
We assume that we can expand U(z) in a Taylor series so

U(z) ~ XN: (2 — )" d"U(z,) =7 (9.1)

n! dz,™
n=0

where N > m. The stability of U at x = x¢ will depend on the first (smallest n) nonzero coefficient in the Taylor series,
not including n = 0. If the first n is odd the potential U(z) will be unstable at x = x. The figure below shows a cases
there U oc 2% and U oc 23, The figure shows how a particle would slide away in the minus z-direction and be contained
in the plus z-direction.

U(x) as an odd power of x
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If the first nonzero coefficient in the Taylor series has an n that is even the potential U(z) will be stable at x = z if

n Tx=2T0
the coefficient < dgfgfl*) is greater than zero and unstable if it’s less than zero. The figure below shows a case there

U x 5.

In conclusion, U(z) will be

k Tx=2T0
stable only when the first nonzero derivative of U (x) (< d[i(g,i*) > 0) is an even number of derivatives (k even) and

has a positive value when evaluated at © = x¢,

neutrally stable if U(z) is constant and all coefficients in the Taylor series expansion are zero except the n = 0 term,

and

unstable otherwise.

U(x) as an even power of x
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