This starts with an exercise that walks you through a problem. It's a little different format from the last homework. A particle of mass $m$ moves in one dimension, $r$, with the following potential energy

$$
\begin{equation*}
U(r)=a r+\frac{b}{r^{2}} \tag{0.1}
\end{equation*}
$$

where $a$ and $b$ are positive constants, and the position of the particle, $r$, is always positive.

## 1 Force (10 pts)

Find the force, $F(r)$, from this potential as a function of $r$.

| $F(r)=-\frac{\partial U(r)}{\partial r} \Rightarrow$ | $\Rightarrow 1.0$ solution | (1.1) |
| ---: | :--- | :--- |

## 2 Equilibrium Position (5 pts)

Find $r_{0}$, the one equilibrium $r$ position of the particle as a function of $a$ and $b$.

|  |  |
| ---: | :--- |
| $F\left(r_{0}\right)=0$ | $\Rightarrow \quad 2.0$ solution |
| $r_{0}=\sqrt[3]{\frac{2 b}{a}}$ | (2.1) |

## 4

## 3 Scale $U(r)$ ( 10 pts )

Rewrite $U(r)$ replacing parameters $a$ and $b$ with parameters $r_{0}$ and $U_{0} \equiv U\left(r=r_{0}\right)$.

|  | 3.0 solution | - |
| :---: | :---: | :---: |

From the definition of $U_{0}$ and equation 2.1 we have the two equations

$$
\begin{align*}
U_{0} & =r_{0} a+\frac{1}{r_{0}^{2}} b  \tag{3.1}\\
0 & =-a+\frac{2}{r_{0}^{3}} b \tag{3.2}
\end{align*}
$$

which we can solve for $a$ and $b$ in terms of $U_{0}$ and $r_{0}$ giving

$$
\begin{align*}
a & =\frac{2}{3} \frac{U_{0}}{r_{0}}  \tag{3.3}\\
b & =\frac{1}{3} U_{0} r_{0}^{2} \tag{3.4}
\end{align*}
$$

which with equation 0.1 gives

$$
\begin{equation*}
U(r)=U_{0}\left[\frac{2}{3} \frac{r}{r_{0}}+\frac{1}{3}\left(\frac{r_{0}}{r}\right)^{2}\right] \tag{3.5}
\end{equation*}
$$

## 4 Plot $U(r)$ ( 10 pts )

Note that the shape of the function $U(r)$ does not change with the parameters $U_{0}$ and $r_{0}$, it just gets scaled along the $U$-direction with the value of $U_{0}$, and along the $r$-direction with the value of $r_{0}$. Make a plot of $\frac{U(r)}{U_{0}}$ as a function of $\frac{r}{r_{0}}$.

$\uparrow |$|  | 4.0 solution |  |  |
| :--- | :--- | :--- | :--- |



## 5 Expanding about the Equilibrium Position (10 pts)

When the particle is displaced a small amount from $r_{0}$ in the positive $r$ direction or the negative $r$ direction it is pushed back to $r=r_{0}$ by the force from this potential. We call this equilibrium position, $r=r_{0}$, a stable equilibrium position. The shape of $U(r)$ at, or near, $r=r_{0}$, is concave up, like a valley.

Expand $U(r)$ as a Taylor series about $r=r_{0}$ up to, and including, the $\left(r-r_{0}\right)^{2}$ term. Answer in terms of $U_{0}, r_{0}$, and $r$. Recall that a Taylor series expansion has the form

$$
\begin{equation*}
\left.U(r) \approx \sum_{n=0}^{N} \frac{\left(r-r_{0}\right)^{n}}{n!} \frac{\mathrm{d}^{n} U\left(r_{\star}\right)}{\mathrm{d} r_{\star}{ }^{n}}\right|^{r_{\star}=r_{0}} \tag{5.1}
\end{equation*}
$$


therefore

$$
\begin{equation*}
U(r) \approx U_{0}+\frac{U_{0}}{r_{0}^{2}}\left(r-r_{0}\right)^{2} \tag{5.3}
\end{equation*}
$$



zooming in more


## 6 Small Oscillations about the Equilibrium Position (10 pts)

Note that when $U(r)$ is expanded about $r=r_{0}$ to $\left(r-r_{0}\right)^{2}$ it has the same form as the potential for a 1-D simple harmonic oscillator

$$
\begin{equation*}
U(x)=C+\frac{1}{2} k x^{2} \tag{6.1}
\end{equation*}
$$

where $x=r-r_{0}, C$ is a constant, and $k$ is the spring constant.

## 6.1

For our potential, $U(r)$, what is the spring constant, $k$, when we are near $r=r_{0}$ ? Answer in terms of constants $U_{0}$ and $r_{0}$.
$\uparrow \quad 6.1$ solution
By inspection of equation 5.2 with 6.1

$$
\begin{equation*}
k=\frac{2 U_{0}}{r_{0}^{2}} . \tag{6.2}
\end{equation*}
$$

4

## 6.2

What will be the angular frequency of oscillation, $\omega_{0}$, of the particle about the equilibrium position $r=r_{0}$ ? Express your answer in terms of $U_{0}, r_{0}$ and $m$. Recall that the angular frequency of oscillation for simple harmonic oscillator is $\omega_{0}=\sqrt{\frac{k}{m}}$, where $k$ is the spring force constant and $m$ is the mass.

$$
\begin{equation*}
\omega_{0}=\sqrt{\frac{k}{m}}=\sqrt{\frac{2 U_{0}}{m r_{0}^{2}}} \tag{6.3}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\omega_{0}=\sqrt{\frac{2 U_{0}}{m r_{0}^{2}}} . \tag{6.4}
\end{equation*}
$$

t

## 7 Another Way (15 pts)

### 7.1 Equation of Motion (5)

Write the equation of motion of the particle in this $1-\mathrm{D}$ potential. Express your answer in terms of $U_{0}, r_{0}$, $m$, (without $a$ and $b$ ) and $r$ and its time derivatives. So your answer should be of the form $m \ddot{r}=f(r)$, where $f(r)$ is the force as a function of variable $r$ and parameters $U_{0}$ and $r_{0}$.

## 7.1 solution

From equations 1.1, 3.3, 3.4 and Newton's 2nd law we have

$$
\begin{equation*}
F(r)=-a+\frac{2 b}{r^{3}} \quad \Rightarrow \quad m \ddot{r}=-\frac{2}{3} \frac{U_{0}}{r_{0}}+\frac{2}{3} U_{0} \frac{r_{0}^{2}}{r^{3}} \text {. } \tag{7.1}
\end{equation*}
$$

### 7.2 Expand the Equation of Motion about the Equilibrium Position (10)

Expand the equation of motion about the equilibrium position, $r_{0}$, by making the substitution $r \equiv r_{0}+\eta$, where $\eta$ is small compared to $r_{0}$, and show that the equation of motion of $\eta$ is that of simple harmonic motion, $\ddot{\eta}=-\omega_{0}^{2} \eta$, where $\omega_{0}$ is the constant angular frequency that is a function of the constant parameters $U_{0}$ and $r_{0}$. Recall the binomial series expansion $(1+x)^{n} \approx 1+n x$ for small $x$, of course using Taylor series should give the same result.

|  | 7.2 solution |
| :---: | :---: |

$$
\begin{align*}
& r=r_{0}+\eta \quad \Rightarrow \quad \ddot{r}=\ddot{\eta}  \tag{7.2}\\
& \frac{1}{r^{3}}=\frac{1}{\left(r_{0}+\eta\right)^{3}}=\frac{1}{r_{0}^{3}\left(1+\frac{\eta}{r_{0}}\right)^{3}}=\frac{1}{r_{0}^{3}}\left(1+\frac{\eta}{r_{0}}\right)^{-3} \approx \frac{1}{r_{0}{ }^{3}}\left(1-3 \frac{\eta}{r_{0}}\right) \tag{7.3}
\end{align*}
$$

Combining this with the equation of motion (equation 7.1) gives

$$
\begin{equation*}
m \ddot{\eta}=-\frac{2}{3} \frac{U_{0}}{r_{0}}+\frac{2}{3} U_{0} r_{0}^{2}\left[\frac{1}{r_{0}^{3}}\left(1-3 \frac{\eta}{r_{0}}\right)\right] \quad \Rightarrow \quad m \ddot{\eta}=-\frac{2 U_{0}}{r_{0}^{2}} \eta \quad \Rightarrow \quad \ddot{\eta}=-\frac{2 U_{0}}{m r_{0}^{2}} \eta \tag{7.4}
\end{equation*}
$$

which has a constant angular frequency

$$
\begin{equation*}
\omega_{0}=\sqrt{\frac{2 U_{0}}{m r_{0}^{2}}} \tag{7.5}
\end{equation*}
$$

as before.
4

## 8 A Different Problem (15 pts)

A particle, with mass $m$, is under the influence of a force $F=-k x+k \frac{x^{3}}{\alpha^{2}}$, where $k$ and $\alpha$ are constants, and $k$ is positive. Determine the potential $U(x)$, such that $U(0)=0$. Plot a scaled version of $U(x)$, and discuss the motion. What happens when the total energy (potential plus kinetic) is $E=\frac{1}{4} k \alpha^{2}$ ?


## 8.0 solution

$$
\begin{align*}
U(x) & =-\int\left(-k x+k \frac{x^{3}}{\alpha^{2}}\right) \mathrm{d} x  \tag{8.1}\\
& =\frac{1}{2} k x^{2}-\frac{1}{4} \frac{k}{\alpha^{2}} x^{4} \tag{8.2}
\end{align*}
$$

where we have set the constant of integration to zero.
We can plot $\frac{U}{\frac{1}{4} k \alpha^{2}}=2\left(\frac{x}{\alpha}\right)^{2}-\left(\frac{x}{\alpha}\right)^{4}$ as a function of $\frac{x}{\alpha}$


We find equilibrium positions from setting $F\left(x=x_{0}\right)=0$ giving us

$$
\begin{array}{ll} 
& -k x_{0}+k \frac{x_{0}^{3}}{\alpha^{2}}=0 \\
\Rightarrow & x_{0}\left(x_{0}-\alpha\right)\left(x_{0}+\alpha\right)=0 \\
\Rightarrow & x_{0}=0, \pm \alpha \tag{8.5}
\end{array}
$$

We can see from the plot that $x_{0}=0$ is a stable equilibrium position and $x_{0}= \pm \alpha$ are unstable equilibrium positions.
The total energy, $E=\frac{1}{2} m \dot{x}+U(x)$, is a constant of the motion. For the case where the total energy $E$ is such that $E>\frac{1}{4} k \alpha^{2}$ the particle motion will be unbounded for all initial $x$ positions. For the case where the total energy is such that $0<E<\frac{1}{4} k \alpha^{2}$ the particle will be pushed to $-\infty$ as time goes to $\infty$ if it starts with $x<-\alpha$, the particle will be pushed to $+\infty$ as time goes to $\infty$ if it starts with $x>\alpha$, and the particle motion will be periodic and bounded if it starts with $-\alpha<x<\alpha$. For the case where the total energy is such that $E<0$,

- a $x$ position where $U>E$ is forbidden,
- if $x>0$ the motion of $x$ is unbounded going to $+\infty$, and
- if $x<0 x$ goes to $-\infty$ as time goes to $\infty$.
[extra] You may have found that the frequency of small oscillations about $x=0$, the stable equilibrium position, is $\sqrt{\frac{k}{m}}$. The $k \frac{x^{3}}{\alpha^{2}}$ force term causes the frequency to decrease with increasing amplitude.

4

## $9 \quad$ Stability ( 15 pts)

When considering a particle, constrained to move in the $x$-direction, acted on by a potential $U(x)$, how do we determine when the an equilibrium position $x_{0}$, defined by $F_{x}\left(x_{0}\right)=-\left.\frac{\partial U}{\partial x}\right|^{x=x_{0}}=0$, is stable, unstable, or neutral, when $\left.\frac{\partial^{n} U}{\partial x^{n}}\right|^{x=x_{0}}=$ 0 for $n=1$ to $m$ where $m \geq 2$ ? You may assume that $U(x)$ and all it derivatives are continuous functions.

## 9.0 solution

We assume that we can expand $U(x)$ in a Taylor series so

$$
\begin{equation*}
\left.U(x) \approx \sum_{n=0}^{N} \frac{\left(x-x_{0}\right)^{n}}{n!} \frac{\mathrm{d}^{n} U\left(x_{\star}\right)}{\mathrm{d} x_{\star}{ }^{n}}\right|^{x_{\star}=x_{0}} \tag{9.1}
\end{equation*}
$$

where $N>m$. The stability of $U$ at $x=x_{0}$ will depend on the first (smallest $n$ ) nonzero coefficient in the Taylor series, not including $n=0$. If the first $n$ is odd the potential $U(x)$ will be unstable at $x=x_{0}$. The figure below shows a cases there $U \propto x^{5}$ and $U \propto x^{3}$. The figure shows how a particle would slide away in the minus $x$-direction and be contained in the plus $x$-direction.
$\mathrm{U}(\mathrm{x})$ as an odd power of x


If the first nonzero coefficient in the Taylor series has an $n$ that is even the potential $U(x)$ will be stable at $x=x_{0}$ if the coefficient $\left.\frac{\mathrm{d}^{n} U\left(x_{\star}\right)}{\mathrm{d} x_{\star}^{n}}\right|^{x_{\star}=x_{0}}$ is greater than zero and unstable if it's less than zero. The figure below shows a case there $U \propto x^{6}$.

In conclusion, $U(x)$ will be
stable only when the first nonzero derivative of $U(x)\left(\left.\frac{\mathrm{d}^{k} U\left(x_{\star}\right)}{\left.\mathrm{d} x_{\star}\right)^{x_{*}=x_{0}}}\right|^{0}>0\right.$ is an even number of derivatives ( $k$ even) and has a positive value when evaluated at $x=x_{0}$,
neutrally stable if $U(x)$ is constant and all coefficients in the Taylor series expansion are zero except the $n=0$ term, and
unstable otherwise.
$\mathrm{U}(\mathrm{x})$ as an even power of x


