This starts with an exercise that walks you through a problem. It's a little different format from the last homework.
A particle of mass m moves in one dimension, r, with the following potential energy

$$
\begin{equation*}
U(r)=a r+\frac{b}{r^{2}} \tag{0.1}
\end{equation*}
$$

where a and b are positive constants, and the position of the particle, r, is always positive.

1 Force

Find the force, $F(r)$, from this potential as a function of r.

2 Equilibrium Position

Find r_{0}, the one equilibrium r position of the particle as a function of a and b.

3 Scale $U(r)$

Rewrite $U(r)$ replacing parameters a and b with parameters r_{0} and $U_{0} \equiv U\left(r=r_{0}\right)$.

4 Plot $U(r)$

Note that the shape of the function $U(r)$ does not change with the parameters U_{0} and r_{0}, it just gets scaled along the U-direction with the value of U_{0}, and along the r-direction with the value of r_{0}. Make a plot of $\frac{U(r)}{U_{0}}$ as a function of $\frac{r}{r_{0}}$.

5 Expanding about the Equilibrium Position

When the particle is displaced a small amount from r_{0} in the positive r direction or the negative r direction it is pushed back to $r=r_{0}$ by the force from this potential. We call this equilibrium position, $r=r_{0}$, a stable equilibrium position. The shape of $U(r)$ at, or near, $r=r_{0}$, is concave up, like a valley.

Expand $U(r)$ as a Taylor series about $r=r_{0}$ up to, and including, the $\left(r-r_{0}\right)^{2}$ term. Answer in terms of U_{0}, r_{0}, and r. Recall that a Taylor series expansion has the form

$$
\begin{equation*}
\left.U(r) \approx \sum_{n=0}^{N} \frac{\left(r-r_{0}\right)^{n}}{n!} \frac{\mathrm{d}^{n} U\left(r_{\star}\right)}{\mathrm{d} r_{\star}{ }^{n}}\right|^{r_{\star}=r_{0}} . \tag{5.1}
\end{equation*}
$$

6 Small Oscillations about the Equilibrium Position

Note that when $U(r)$ is expanded about $r=r_{0}$ to $\left(r-r_{0}\right)^{2}$ it has the same form as the potential for a 1-D simple harmonic oscillator

$$
\begin{equation*}
U(x)=C+\frac{1}{2} k x^{2} \tag{6.1}
\end{equation*}
$$

where $x=r-r_{0}, C$ is a constant, and k is the spring constant.

6.1

For our potential, $U(r)$, what is the spring constant, k, when we are near $r=r_{0}$? Answer in terms of constants U_{0} and r_{0}.

6.2

What will be the angular frequency of oscillation, ω_{0}, of the particle about the equilibrium position $r=r_{0}$? Express your answer in terms of U_{0}, r_{0} and m.

7 Another Way

7.1 Equation of Motion

Write the equation of motion of the particle in this 1-D potential. Express your answer in terms of U_{0}, r_{0} and m.

7.2 Expand the Equation of Motion about the Equilibrium Position

Expand the equation of motion about the equilibrium position, r_{0}, by making the substitution $r \equiv r_{0}+\eta$, where η is small compared to r_{0}, and show that the equation of motion of η is that of simple harmonic motion, $\ddot{\eta}=-\omega_{0}^{2} \eta$, where ω_{0} is the constant angular frequency. Recall the binomial series expansion $(1+x)^{n} \approx 1+n x$ for small x, of course using Taylor series should give the same result.

8 A Different Problem

A particle, with mass m, is under the influence of a force $F=-k x+k \frac{x^{3}}{\alpha^{2}}$, where k and α are constants, and k is positive. Determine the potential $U(x)$, plot a scaled version of $U(x)$, and discuss the motion. What happens when the total energy (potential plus kinetic) is $E=\frac{1}{4} k \alpha^{2}$?

$9 \quad$ Stability

When considering a particle, constrained to move in the x-direction, acted on by a potential $U(x)$, how do we determine when the an equilibrium position x_{0}, defined by $F_{x}\left(x_{0}\right)=-\left.\frac{\partial U}{\partial x}\right|^{x=x_{0}}=0$, is stable, unstable, or neutral, when $\left.\frac{\partial^{n} U}{\partial x^{n}}\right|^{x=x_{0}}=$ 0 for $n=1$ to m where $m \geq 2$? You may assume that $U(x)$ and all it derivatives are continuous functions.

