1 how small is displacement to make simple harmonic motion

For a large class of forces we can expand the force function into a Taylor series. For example springs have forces that behave like F = -kx, where k is a constant and x is the elongation in the spring. This works so long as the value of x is limited in size, but for larger values of x the springs may behave more like $F = -kx - k_3x^3$.

A particle that is constrained to move in one dimension has following net force

$$F(x) = -k_1 x - k_2 x^2 - k_3 x^3, (1.1)$$

where k_1 , k_2 , and k_3 are positive constants, and x is the displacement of the particle. It is easy to see that x = 0 is an equilibrium position, since F(0) = 0. And so this is a pretty general form for a 1-D force expanded near equilibrium. (We are excluding discontinuous functions.) No matter what the values of k_1 , k_2 , and k_3 have we can always have a small enough value of x such that the linear force term is dominant.

How small must x be such that the size of the linear force $-k_1x$ term is 100 or more times the quadratic force term $-k_2x^2$? Also, how small must x be such that the size of the linear force term $-k_1x$ is 100 or more times the cubic force term $-k_3x^3$? Express your answers in terms of k_1 , k_2 , and k_3 .

2 energy

A simple harmonic oscillator consisting of a block and a spring has an frequency $f_0 = 2$ Hz. There is no friction or driving force. The block has a mass m = 100g. The block is set into motion, with an initial speed of 10 cm/s, from its equilibrium position. Find the maximum potential energy in the spring, U_{max} , and the amplitude, A, of the oscillation. Assume that the potential energy is zero at the equilibrium position. Ignore gravity.