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1 two springs

1.1 in parallel

Two massless springs, with spring constants k1 and k2, are connected as shown in the figure below. Both springs have
the same rest (zero force) length. The wall to the left of the springs does not move. Ignore gravity.

The mass, with mass m, oscillates without friction along the direction shown. The mass is constrained to move only
in the direction shown. Find the angular frequency of oscillation, ω0, of the mass.

1.2 in series

Two massless springs with spring constants k1 and k2 are connected as shown in the figure below. The wall to the left of
the springs does not move. Ignore gravity.

The mass, with mass m, oscillates without friction along the direction shown. Find the angular frequency of oscillation,
ω0, of the mass.

2 two springs in 2-D (extra credit: 10 pts)

The two linear springs shown have rest length l and spring constant k. l is not necessarily related to the length a shown
in the figure. A particle is attached to both strings at the origin of the x-y coordinate system shown. The particle can be
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moved in the x-y plane while the two springs stay attached pushing and/or pulling on it. The ends of the springs stay
attached to the walls, and the walls do not move. You may consider the particle to have negligible size so that the springs
have a length a when the particle is at the origin. There are no forces from gravity.

2.1 potential

Find the potential energy in the springs U(x, y) as a function of variables x and y, and parameters k, a, and l.

2.2 potential for small x and y

Expand U(x, y) about small x and y to show that this potential is that of a 2-D anisotropic harmonic oscillator that
oscillates independently in the x and y directions, and so the potential energy can be written in the form U(x, y) =
constant + 1

2
kxx2 + 1

2
kyy2, where kx and ky are two different constants.

2.3 cases

What happens to the potential energy when l < a, l > a, and l = a?

2.4 simple harmonic case

Given that m is the mass of the particle, l < a, and both x and y are small, what is the solution to the motion, x(t) and
y(t), where t is time, when the initial position is at x = Xi and y = Yi, and the particle starts at rest (not moving)?

3 two solution forms

The general solution of an undriven, under-damped simple harmonic oscillator ẍ + 2βẋ + ω2

0
x = 0 can be written as

x = Ce−βt cos(φ + δ), where φ =
√

ω2

0
− β2 t, and C and δ are constants of integration. The general solution can also be

written as x = A cosφ + Bsinφ, where φ is the same as before, and A and B are constants of integration.
Show that these two general solutions can represent the same functions by finding C(A, B) as a function of A and B,

and δ(A, B) as a function of A and B, whereby showing that C(A, B)e−βt cos(φ + δ(A, B)) = Ae−βt cosφ + Be−βtsinφ

4 plotting a damped simple harmonic oscillator

A damped simple harmonic oscillator is modeled by

ẍ = −ω2

0
x − bẋ, (4.1)

where ω = 2rad/s and b = 0.4/s, and x is the dependent variable that depends on t time. The oscillator has the initial
conditions x(0) = 1m and ẋ(0) = 1

2
m/s.

With these initial conditions, use your computer to plot x(t) and ẋ(t) verses t (time) for t = 0 to 10 seconds. Also
make a phase plot of ẋ(t) verses x(t) for t = 0 to 30 seconds.

You may use any 2-D plotter that you like, so long as you can manage to produce a paper copy for your solution
to this problem. Gnuplot is a free 2-D plotter that works on GNU/Linux, MS Windows, Mac, and more. You can get
gnuplot at http://gnuplot.sourceforge.net/. The instructor used gnuplot to make the solutions to this homework. Another
possibility is to use Mathematica.

5 two first order linear differential equations

The undriven over-damped harmonic oscillator

ẍ = −ω2

0
x − 2βẋ, (5.1)
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where ω0 and β are constant parameters, and ω2 ≡

√

β2
− ω2

0
is a real constant that is greater than zero, can be rewritten

as the two first order linear differential equations

(

ẋ

ṗ

)

=

(

0 1
−ω2

0
−2β

) (

x

p

)

, (5.2)

where x and p ≡ ẋ are the two time dependent variables of the system.
Solve 5.2 finding the two eigenvalues and eigenvectors for this system along the way. Use the form of solution:

(

x(t)
p(t)

)

=

(

a1

a2

)

eλt
≡ ~aeλt, where ~a is an eigenvector and λ is an eigenvalue. Normalizing the eigenvectors is not

required. Compare your two eigenvectors with the two dotted lines in the phase plot (with p ≡ v) in figure 3-11 (page
115) in Thornton and Marion. You can get a copy of it in the file TandM figure3.11.pdf where you got this file.


