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This homework looks long only because it reiterates some of the content in the text and from lecture. Extra credit
problem parts have been introduced in order to reduce the size of the required homework. Do the non-extra credit
problems first. The score value of the extra credit problems is not very significant.

1 linear resonance response curve

Consider a driven damped harmonic oscillator

ẍ + 2βẋ + ω2

0
x = A cosωt, (1.1)

where β, ω0, A and ω are constant parameters, and t is time. We can call A the driving amplitude, and ω the driving
angular frequency.

As explained in the text the steady state solution for x(t), which we refer to as xp(t), can be written as
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We define the response amplitude, D, as the factor that multiples the cos function so
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The steady state solution, xp(t) does not depend on initial conditions like the transient (complementary) solutions.
xp(t) is the solution that is approached after a long time after the transient (complementary) solution, which depended
on initial conditions, has died away in an asymptotic fashion as time increased.

We define Q, the quality factor as

Q ≡

ωR

2β
, (1.5)

where ωR is the value of the driving angular frequency, ω, when there is a the maximum amplitude, D, of xp(t) (the
steady state solution). So that the steady state amplitude of xp(t) is maximized at an ω value equal to ωR.

Show that ω2

R = ω2

0
− 2β2.

2 scaling the driven simple harmonic oscillator

A sinusoidally driven damped simple harmonic oscillator can be modeled by

m
d2x

dt2
+ b

dx

dt
+ kx = F0 cosωt, (2.1)

where m is mass, k is a linear spring constant, b is a linear damping constant, F0 is the force amplitude of the driving
force, and ω is the driving force angular frequency. So there are five physical parameters, but we know that we do not
need to study a five-dimensional parameter space in order to study this system. We know that we can divide this equation
by m, giving the following equation
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which we can rewrite as
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+ 2β
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+ ω2

0
x = A cosωt, (2.3)
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where ω2

0
≡

k
m

, 2β ≡
b
m

, and A ≡
F0

m
are derived parameters. We have reduced a five-dimensional parameter space to a

four-dimensional parameter space, by introducing new derived parameters. A distinction between the system in equation
2.1 and that in the scaled equation 2.3, is that the scaled system in equation 2.3 cannot represent the unscaled system in
equation 2.1 when we have zero mass, m = 0, but otherwise the results gotten from equation 2.3 can be easily transformed
to our original “real” physical model in equation 2.1.

2.1 fully scaled

We continue the scaling process started here by introducing the change of variables η = x
x0

, and τ = t
t0

, where x0 and t0
are yet to be determined functions of the four remaining parameters. Note that, if x0 has units of length and t0 has units
of time, then η and τ will be dimensionless. Find x0 and t0 such that there are only two parameters left in this scaled
differential equation for the new variable η in terms of derivatives with respect to the new independent variable τ , like so

d2η

dτ2
+ 2ν

dη

dτ
+ η = cosΩτ, (2.4)

and what are the two remaining derived parameters ν and Ω in terms of the five original physical parameters.

2.2 other scalings(5 pts extra credit)

The scaling of ODE models is not always unique. For each of the ordinary differential equations (ODEs) listed below, show
whether or not our driven damped simple harmonic oscillator, from equation 2.1, may be scaled (linearly transformed)
into that ODE.

µ
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+ 2
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dτ
+ η = cosΩτ (2.5)

d2η
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+ η = Λ cosΩτ (2.6)

2.3 subjective question (5 pts extra credit)

What good are scaled ODE models? Please be brief.


