1 Shooting the Moon

In this problem assume that there is no atmospheric friction, and use a static model for the earth and moon system. Use: the mass of the earth is $M_{E}=5.97 \times 10^{24} \mathrm{~kg}$, the mass of the moon is $M_{m}=7.35 \times 10^{22} \mathrm{~kg}$, the radius of the earth is $R_{E}=6.38 \times 10^{6} \mathrm{~m}$, and radius of the moon is $R_{m}=1.74 \times 10^{6}$, the orbit radius of the earth moon system as measured from earth's center to the moon's center is $R_{o}=3.84 \times 10^{8} \mathrm{~m}$, and the gravitation constant $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$.

Find the minimum initial speed of a projectile that is shot to the surface of the moon, v_{i}. You must keep at least three significant figures. (The escape speed for earth is about $11200 \frac{\mathrm{~m}}{\mathrm{~s}}$, and this is not much different.)

