
HW08: Calculus of Variations, Phys3355,Fall 2005, with solution 1

1 Stationary Integral

Find y(x) such that the following integral is stationary,

J =

∫

x2

x1

(

1

2
y′2 + a y

)

dx, (1.1)

where y′ ≡ dy

dx
, and a is a constant.

Hints: Do so by using the Euler equation,

∂f

∂y
−

d

dx

(

∂f

∂y′

)

= 0, (1.2)

where f(y, y′; x) = 1
2 y′2 + a y. You do not have to determine the two constants of integration, just call them c1 and c2.

? ?
1.0 solution

For J to be stationary Euler’s equation must be satisfied, so

∂f

∂y
−

d

dx

(

∂f

∂y′

)

= 0, (1.3)

where

f(y, y′; x) =
1

2
y′2 + ay. (1.4)

This gives

a−
d

dx
(y′) = 0 ⇒ y′′ = a ⇒

∫

dy′

dx
dx =

∫

a dx ⇒ y′ = ax+ c1 ⇒
∫

dy

dx
dx =

∫

(ax + c1) dx (1.5)

⇒ y(x) =
1

2
ax2 + c1x + c2 . (1.6)
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2 Shortest Line Between Two Points

Show that the shortest line between two points in a plane is a straight line.

? ?
2.0 solution

We wish to minimize the path distance between two points (x1, y1) and (x2, y2). This path distance can be expressed as

J =

∫

x2

x1

ds =

∫

x2

x1

√

dx2 + dy2. (2.1)

Since y is just a function of x

dy =
dy

dx
dx = y′ dx, (2.2)

where we have defined

dy

dx
≡ y′. (2.3)
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So we may write J as

J =

∫

x2

x1

√

dx2 + (y′ dx)
2

=

∫

x2

x1

√

(

1 + y′2
)

dx2 =

∫

x2

x1

√

1 + y′2 dx. (2.4)

For J to be a minimum it is necessary that Euler’s equation be satisfied, so

∂f

∂y
−

d

dx

(

∂f

∂y′

)

= 0, (2.5)

where

f =

√

1 + y′2. (2.6)

Plugging f into 2.5 gives

0 −
d

dx

(

y′

√

1 + y′2

)

⇒
y′

√

1 + y′2
= c1 ⇒ y′ = c1

√

1 + y′2 ⇒ y′2 = c2
1

(

1 + y′2
)

⇒ y′2 = c2
1 + c2

1y
′2 ⇒ y′2

(

1 − c2
1

)

= c2
1 ⇒ y′ =

c1
√

1 − c2
1

⇒
∫

dy

dx
dx =

∫

c1
√

1 − c2
1

dx

⇒ y =
c1

√

1 − c2
1

x + c2, (2.7)

which is the equation of a straight line, where c1 and c2 are constants of integration that may be adjusted to connect the
two points, (x1, y1) and (x2, y2).
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3 Stationary Integral

Find y(x) such that the following integral is stationary,

J =

∫

x2

x1

√

1 + y′2

x
dx, (3.1)

where y′ ≡ dy

dx
. What common geometry does y(x) represent?

? ?
3.0 solution

We plug

f =

√

1 + y′2

x
(3.2)

into Euler’s equation to get

−
d

dx

(

1

x

y′

√

1 + y′2

)

= 0 ⇒
1

x

y′

√

1 + y′2
= c1 ⇒ y′ = c1x

√

1 + y′2 ⇒ y′2 = c2
1x

2
(

1 + y′2
)

(3.3)

⇒ y′2
(

1 − c2
1x

2
)

= c2
1x

2 ⇒ y′2 =
c2
1x

2

1 − c2
1x

2
⇒ y′ dx = ±

c1x
√

1 − c2
1x

2
dx (3.4)

⇒ y =

∫

±
c1x

√

1 − c2
1x

2
dx ⇒ y = ∓

1

c1

√

1 − c2
1x

2 + c2 ⇒ c1y − c1c2 = ∓
√

1 − c2
1x

2 (3.5)
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⇒ c2
1 (y − c2)

2
= 1− c2

1x
2 ⇒ c2

1x
2 + c2

1 (y − c2)
2

= 1 ⇒ x2 + (y − c2)
2

=
1

c2
1

. (3.6)

This is the equation of a circle that is centered at x = 0 and who’s y coordinate of the center position and radius depend
on the positions (x1, y1) and (x2, y2).

6 6

4 Application of Fermat’s Principle

Fermat’s principle states that light traverses the path between two points which takes the least time.

The index of refraction for light traveling in a medium n is defined as n ≡ c

v
, where c is the speed of light in a vacuum,

and v is the speed of light in the medium.

Find the path that light will travel, y(x), in a medium with an index of refraction n(x) that is proportional to 1 + a x,
where a is a constant. The light travels in a region of space where x is positive. There is no variation of n along the y

direction. Make a rough plot of y(x).

? ?
4.0 solution

We wish to minimize time t, which is

t =

∫

x2

x1

ds

v
=

∫

x2

x1

ds
(

c

n(x)

) =
1

c

∫

x2

x1

n(x) ds =
k

c

∫

x2

x1

(1 + a x)

√

1 + y′2 dx, (4.1)

where k is the proportionality constant for n(x). So we may say

f = (1 + a x)

√

1 + y′2. (4.2)

Plugging f into Euler’s equation gives

0 −
d

dx

[

(1 + a x)
y′

√

1 + y′2

]

= 0 ⇒ (1 + a x)
y′

√

1 + y′2
= c1 ⇒ (1 + a x) y′ = c1

√

1 + y′2

⇒ (1 + a x)
2
y′2 = c2

1

(

1 + y′2
)

⇒ y′2
[

(1 + a x)
2 − c2

1

]

= c2
1 ⇒ y′2 =

c2
1

(1 + a x)
2 − c2

1

⇒ y′ =
c1

√

(1 + a x)
2 − c2

1

⇒ y =

∫

c1
√

(1 + a x)
2 − c2

1

dx ⇒ y =
c1

a

∫

d (1 + a x)
√

(1 + a x)
2 − c2

1

.

Using the integal

∫

du√
u2 − b2

= ln
(

u +
√

u2 − b2
)

(4.3)

with u = 1 + a x and b = c1, we get

⇒ y =
c1

a
ln

[

(1 + a x) +

√

(1 + a x)2 − c2
1

]

+ c2 , (4.4)

where we have introduced c1 and c2 as the constants of integration.
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ln((1 + ax) +
√

(1 + ax)2 − (1.1)2) VS ax

It looks like y(x) tries to keep the light moving in the smaller x values, where the light travels faster, before moving to
the larger x values were the light would travel more slowly. I don’t see an obvious way to scale out the c1 integration
constant when plotting this.
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