1 Stationary Integral

Find $y(x)$ such that the following integral is stationary,

$$
\begin{equation*}
J=\int_{x_{1}}^{x_{2}}\left(\frac{1}{2} y^{\prime 2}+a y\right) \mathrm{d} x \tag{1.1}
\end{equation*}
$$

where $y^{\prime} \equiv \frac{\mathrm{d} y}{\mathrm{~d} x}$, and a is a constant.
Hints: Do so by using the Euler equation,

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0 \tag{1.2}
\end{equation*}
$$

where $f\left(y, y^{\prime} ; x\right)=\frac{1}{2} y^{\prime 2}+a y$. You do not have to determine the two constants of integration, just call them c_{1} and c_{2}.

1.0 solution

For J to be stationary Euler's equation must be satisfied, so

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0 \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
f\left(y, y^{\prime} ; x\right)=\frac{1}{2} y^{\prime 2}+a y \tag{1.4}
\end{equation*}
$$

This gives

$$
\begin{align*}
& a-\frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{\prime}\right)=0 \Rightarrow y^{\prime \prime}=a \Rightarrow \int \frac{\mathrm{~d} y^{\prime}}{\mathrm{d} x} \mathrm{~d} x=\int a \mathrm{~d} x \quad \Rightarrow \quad y^{\prime}=a x+c_{1} \quad \Rightarrow \quad \int \frac{\mathrm{~d} y}{\mathrm{~d} x} \mathrm{~d} x=\int\left(a x+c_{1}\right) \mathrm{d} x \tag{1.5}\\
& \quad \Rightarrow y(x)=\frac{1}{2} a x^{2}+c_{1} x+c_{2} \tag{1.6}
\end{align*}
$$

2 Shortest Line Between Two Points

Show that the shortest line between two points in a plane is a straight line.

2.0 solution

We wish to minimize the path distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. This path distance can be expressed as

$$
\begin{equation*}
J=\int_{x_{1}}^{x_{2}} \mathrm{~d} s=\int_{x_{1}}^{x_{2}} \sqrt{\mathrm{~d} x^{2}+\mathrm{d} y^{2}} \tag{2.1}
\end{equation*}
$$

Since y is just a function of x

$$
\begin{equation*}
\mathrm{d} y=\frac{\mathrm{d} y}{\mathrm{~d} x} \mathrm{~d} x=y^{\prime} \mathrm{d} x \tag{2.2}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x} \equiv y^{\prime} . \tag{2.3}
\end{equation*}
$$

So we may write J as

$$
\begin{equation*}
J=\int_{x_{1}}^{x_{2}} \sqrt{\mathrm{~d} x^{2}+\left(y^{\prime} \mathrm{d} x\right)^{2}}=\int_{x_{1}}^{x_{2}} \sqrt{\left(1+y^{\prime 2}\right) \mathrm{d} x^{2}}=\int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime 2}} \mathrm{~d} x . \tag{2.4}
\end{equation*}
$$

For J to be a minimum it is necessary that Euler's equation be satisfied, so

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0 \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
f=\sqrt{1+{y^{\prime}}^{2}} \tag{2.6}
\end{equation*}
$$

Plugging f into 2.5 gives

$$
\begin{align*}
0 & -\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right) \Rightarrow \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=c_{1} \quad \Rightarrow y^{\prime}=c_{1} \sqrt{1+y^{\prime 2}} \Rightarrow y^{\prime 2}=c_{1}^{2}\left(1+y^{\prime 2}\right) \\
& \Rightarrow y^{\prime 2}=c_{1}^{2}+c_{1}^{2} y^{\prime 2} \Rightarrow y^{\prime 2}\left(1-c_{1}^{2}\right)=c_{1}^{2} \quad \Rightarrow \quad y^{\prime}=\frac{c_{1}}{\sqrt{1-c_{1}^{2}}} \quad \Rightarrow \quad \int \frac{\mathrm{~d} y}{\mathrm{~d} x} \mathrm{~d} x=\int \frac{c_{1}}{\sqrt{1-c_{1}^{2}}} \mathrm{~d} x \\
& \Rightarrow y=\frac{c_{1}}{\sqrt{1-c_{1}^{2}}} x+c_{2} \tag{2.7}
\end{align*}
$$

which is the equation of a straight line, where c_{1} and c_{2} are constants of integration that may be adjusted to connect the two points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

4

3 Stationary Integral

Find $y(x)$ such that the following integral is stationary,

$$
\begin{equation*}
J=\int_{x_{1}}^{x_{2}} \frac{\sqrt{1+y^{\prime^{2}}}}{x} \mathrm{~d} x \tag{3.1}
\end{equation*}
$$

where $y^{\prime} \equiv \frac{\mathrm{d} y}{\mathrm{~d} x}$. What common geometry does $y(x)$ represent?

3.0 solution

We plug

$$
\begin{equation*}
f=\frac{\sqrt{1+y^{\prime 2}}}{x} \tag{3.2}
\end{equation*}
$$

into Euler's equation to get

$$
\begin{align*}
& -\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)=0 \Rightarrow \frac{1}{x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=c_{1} \quad \Rightarrow \quad y^{\prime}=c_{1} x \sqrt{1+y^{\prime 2}} \quad \Rightarrow \quad y^{\prime 2}=c_{1}^{2} x^{2}\left(1+y^{\prime 2}\right) \tag{3.3}\\
& \quad \Rightarrow \quad y^{\prime 2}\left(1-c_{1}^{2} x^{2}\right)=c_{1}^{2} x^{2} \quad \Rightarrow \quad y^{\prime 2}=\frac{c_{1}^{2} x^{2}}{1-c_{1}^{2} x^{2}} \quad \Rightarrow \quad y^{\prime} \mathrm{d} x= \pm \frac{c_{1} x}{\sqrt{1-c_{1}^{2} x^{2}}} \mathrm{~d} x \tag{3.4}\\
& \quad \Rightarrow \quad y=\int \pm \frac{c_{1} x}{\sqrt{1-c_{1}^{2} x^{2}}} \mathrm{~d} x \quad \Rightarrow \quad y=\mp \frac{1}{c_{1}} \sqrt{1-c_{1}^{2} x^{2}}+c_{2} \quad \Rightarrow \quad c_{1} y-c_{1} c_{2}=\mp \sqrt{1-c_{1}^{2} x^{2}} \tag{3.5}
\end{align*}
$$

$$
\begin{equation*}
\Rightarrow \quad c_{1}^{2}\left(y-c_{2}\right)^{2}=1-c_{1}^{2} x^{2} \quad \Rightarrow \quad c_{1}^{2} x^{2}+c_{1}^{2}\left(y-c_{2}\right)^{2}=1 \quad \Rightarrow \quad x^{2}+\left(y-c_{2}\right)^{2}=\frac{1}{c_{1}^{2}} . \tag{3.6}
\end{equation*}
$$

This is the equation of a circle that is centered at $x=0$ and who's y coordinate of the center position and radius depend on the positions $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

4 Application of Fermat's Principle

Fermat's principle states that light traverses the path between two points which takes the least time.
The index of refraction for light traveling in a medium n is defined as $n \equiv \frac{c}{v}$, where c is the speed of light in a vacuum, and v is the speed of light in the medium.

Find the path that light will travel, $y(x)$, in a medium with an index of refraction $n(x)$ that is proportional to $1+a x$, where a is a constant. The light travels in a region of space where x is positive. There is no variation of n along the y direction. Make a rough plot of $y(x)$.

4.0 solution

We wish to minimize time t, which is

$$
\begin{equation*}
t=\int_{x_{1}}^{x_{2}} \frac{\mathrm{~d} s}{v}=\int_{x_{1}}^{x_{2}} \frac{\mathrm{~d} s}{\left(\frac{c}{n(x)}\right)}=\frac{1}{c} \int_{x_{1}}^{x_{2}} n(x) \mathrm{d} s=\frac{k}{c} \int_{x_{1}}^{x_{2}}(1+a x) \sqrt{1+y^{\prime 2}} \mathrm{~d} x \tag{4.1}
\end{equation*}
$$

where k is the proportionality constant for $n(x)$. So we may say

$$
\begin{equation*}
f=(1+a x) \sqrt{1+y^{\prime 2}} \tag{4.2}
\end{equation*}
$$

Plugging f into Euler's equation gives

$$
\begin{aligned}
0 & -\frac{\mathrm{d}}{\mathrm{~d} x}\left[(1+a x) \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right]=0 \Rightarrow(1+a x) \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=c_{1} \quad \Rightarrow \quad(1+a x) y^{\prime}=c_{1} \sqrt{1+y^{\prime 2}} \\
& \Rightarrow(1+a x)^{2} y^{\prime 2}=c_{1}^{2}\left(1+{y^{\prime}}^{2}\right) \quad \Rightarrow \quad y^{\prime 2}\left[(1+a x)^{2}-c_{1}^{2}\right]=c_{1}^{2} \quad \Rightarrow \quad y^{\prime 2}=\frac{c_{1}^{2}}{(1+a x)^{2}-c_{1}^{2}} \\
& \Rightarrow \quad y^{\prime}=\frac{c_{1}}{\sqrt{(1+a x)^{2}-c_{1}^{2}}} \Rightarrow y=\int \frac{c_{1}}{\sqrt{(1+a x)^{2}-c_{1}^{2}}} \mathrm{~d} x \quad \Rightarrow \quad y=\frac{c_{1}}{a} \int \frac{\mathrm{~d}(1+a x)}{\sqrt{(1+a x)^{2}-c_{1}^{2}}}
\end{aligned}
$$

Using the integal

$$
\begin{equation*}
\int \frac{\mathrm{d} u}{\sqrt{u^{2}-b^{2}}}=\ln \left(u+\sqrt{u^{2}-b^{2}}\right) \tag{4.3}
\end{equation*}
$$

with $u=1+a x$ and $b=c_{1}$, we get

$$
\begin{equation*}
\Rightarrow \quad y=\frac{c_{1}}{a} \ln \left[(1+a x)+\sqrt{(1+a x)^{2}-c_{1}^{2}}\right]+c_{2} \tag{4.4}
\end{equation*}
$$

where we have introduced c_{1} and c_{2} as the constants of integration.

It looks like $y(x)$ tries to keep the light moving in the smaller x values, where the light travels faster, before moving to the larger x values were the light would travel more slowly. I don't see an obvious way to scale out the c_{1} integration constant when plotting this.

