1 Stationary Integral

Find $y(x)$ such that the following integral is stationary,

$$
\begin{equation*}
J=\int_{x_{1}}^{x_{2}}\left(\frac{1}{2} y^{\prime 2}+a y\right) \mathrm{d} x \tag{1.1}
\end{equation*}
$$

where $y^{\prime} \equiv \frac{\mathrm{d} y}{\mathrm{~d} x}$, and a is a constant.
Hints: Do so by using the Euler equation,

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0 \tag{1.2}
\end{equation*}
$$

where $f\left(y, y^{\prime} ; x\right)=\frac{1}{2} y^{\prime 2}+a y$. You do not have to determine the two constants of integration, just call them c_{1} and c_{2}.

2 Shortest Line Between Two Points

Show that the shortest line between two points in a plane is a straight line.

3 Stationary Integral

Find $y(x)$ such that the following integral is stationary,

$$
\begin{equation*}
J=\int_{x_{1}}^{x_{2}} \frac{\sqrt{1+y^{\prime 2}} \mathrm{~d} x}{x} \tag{3.1}
\end{equation*}
$$

where $y^{\prime} \equiv \frac{\mathrm{d} y}{\mathrm{~d} x}$. What common geometry does $y(x)$ represent?

4 Application of Fermat's Principle

Fermat's principle states that light traverses the path between two points which takes the least time.
The index of refraction for light traveling in a medium n is defined as $n \equiv \frac{c}{v}$, where c is the speed of light in a vacuum and v is the speed of light in the medium.

Find the path that light will travel, $y(x)$, in a medium with an index of refraction $n(x)$ that is proportional to $1+a x$, where a is a constant. The light travels in a region of space where x is positive. There is no variation of n along the y direction. Make a rough plot of $y(x)$.

