1 Stationary Integral

Find the differential equations that $x(t)$ and $y(t)$ must satisfy such that the following integral is stationary,

$$
\begin{equation*}
J=\int_{t_{1}}^{t_{2}}\left(\frac{1}{2} \dot{x}^{2}+\frac{1}{2} \dot{y}^{2}-k x y+x A \cos \omega t\right) \mathrm{d} t \tag{1.1}
\end{equation*}
$$

where $\dot{x} \equiv \frac{\mathrm{~d} x}{\mathrm{~d} t}, \dot{y} \equiv \frac{\mathrm{~d} y}{\mathrm{~d} t}$, and k, A, and ω are constants. Hints: Use Euler's equations. You do not need to solve for $x(t)$ and $y(t)$, just find the differential equations that $x(t)$ and $y(t)$ must satisfy.

For J to be stationary Euler's equations must be satisfied, so

$$
\begin{equation*}
\frac{\partial f}{\partial x}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial f}{\partial \dot{x}}\right)=0, \quad \text { and } \quad \frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial f}{\partial \dot{y}}\right)=0 \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x, \dot{x}, y, \dot{y} ; x)=\frac{1}{2} \dot{x}^{2}+\frac{1}{2} \dot{y}^{2}-k x y+x A \cos \omega t \tag{1.3}
\end{equation*}
$$

This gives

$$
\begin{equation*}
-k y+A \cos \omega t-\frac{\mathrm{d} \dot{x}}{\mathrm{~d} t}=0 \quad \text { and } \quad-k x-\frac{\mathrm{d} \dot{y}}{\mathrm{~d} t}=0 \quad \Rightarrow \quad \ddot{x}+k y=A \cos \omega t \quad \text { and } \quad \ddot{y}+k x=0 \tag{1.4}
\end{equation*}
$$

where $\ddot{x} \equiv \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}$ and $\ddot{y} \equiv \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}$.

