1 Stationary Integral

Find the differential equations that $x(t)$ and $y(t)$ must satisfy such that the following integral is stationary,

$$
\begin{equation*}
J=\int_{t_{1}}^{t_{2}}\left(\frac{1}{2} \dot{x}^{2}+\frac{1}{2} \dot{y}^{2}-k x y+x A \cos \omega t\right) \mathrm{d} t \tag{1.1}
\end{equation*}
$$

where $\dot{x} \equiv \frac{\mathrm{~d} x}{\mathrm{~d} t}, \dot{y} \equiv \frac{\mathrm{~d} y}{\mathrm{~d} t}$, and k, A, and ω are constants. Hints: Use Euler's equations. You do not need to solve for $x(t)$ and $y(t)$, just find the differential equations that $x(t)$ and $y(t)$ must satisfy.

