1 Shortest Path in Between Two Points

Show that the shortest path between two points in three-dimensional space is that of a straight line. Hint: Use Euler's equations with several dependent variables $x(t), y(t)$, and $z(t)$, with t being the independent variable.
$\uparrow \quad 1.0$ solution
We minimize

$$
\begin{equation*}
J=\int_{x_{1}}^{x_{2}} \mathrm{~d} s=\int_{x_{1}}^{x_{2}} \sqrt{(\mathrm{~d} x)^{2}+(\mathrm{d} y)^{2}+(\mathrm{d} z)^{2}} \tag{1.1}
\end{equation*}
$$

where $\mathrm{d} x, \mathrm{~d} y$, and $\mathrm{d} z$, are the differentials of the Cartesian coordinates x, y, and z respectively, and x_{1} and x_{2} correspond to two fixed positions in the Cartesian space. Since $x=x(t), y=y(t)$, and $z=z(t)$, we have

$$
\begin{equation*}
\mathrm{d} x=\frac{\mathrm{d} x}{\mathrm{~d} t} \mathrm{~d} t \equiv x^{\prime} \mathrm{d} t \quad \mathrm{~d} y=\frac{\mathrm{d} y}{\mathrm{~d} t} \mathrm{~d} t \equiv y^{\prime} \mathrm{d} t \quad \mathrm{~d} z=\frac{\mathrm{d} z}{\mathrm{~d} t} \mathrm{~d} t \equiv z^{\prime} \mathrm{d} t \tag{1.2}
\end{equation*}
$$

So

$$
\begin{equation*}
J=\int_{t_{1}}^{t_{2}} \sqrt{\left(x^{\prime} \mathrm{d} t\right)^{2}+\left(y^{\prime} \mathrm{d} t\right)^{2}+\left(z^{\prime} \mathrm{d} t\right)^{2}}=\int_{t_{1}}^{t_{2}} \sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}} \mathrm{~d} t \tag{1.3}
\end{equation*}
$$

where t_{1} and t_{2} are the corresponding values of the variable t at positions x_{1} and x_{2}. We define the functional

$$
\begin{equation*}
f=\sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}} \tag{1.4}
\end{equation*}
$$

where we require that it satisfy the following Euler equations

$$
\begin{equation*}
\frac{\partial f}{\partial x}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial f}{\partial x^{\prime}}=0 \quad \frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial f}{\partial y^{\prime}}=0 \quad \frac{\partial f}{\partial z}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial f}{\partial z^{\prime}}=0 \tag{1.5}
\end{equation*}
$$

which will make J at least stationary, but we will guess that it's a minimum. Doing this gives

$$
\begin{equation*}
0-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}+{z^{\prime 2}}^{2}}}\right)=0 \quad 0-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}+{z^{\prime 2}}^{2}}}\right)=0 \quad 0-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{z^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}+{z^{\prime 2}}^{2}}}\right)=0 \tag{1.6}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}}=C_{1} \quad \frac{y^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}}=C_{2} \quad \frac{z^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}}=C_{3} \tag{1.7}
\end{equation*}
$$

where C_{1}, C_{2}, and C_{3}, are constants of integration. We may rewrite equations 1.7 as

$$
\begin{equation*}
\frac{x^{\prime}}{C_{1}}=\sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}} \quad \frac{y^{\prime}}{C_{2}}=\sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}} \quad \frac{z^{\prime}}{C_{3}}=\sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}} \tag{1.8}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{x^{\prime}}{C_{1}}=\frac{y^{\prime}}{C_{2}}=\frac{z^{\prime}}{C_{3}} \quad \Rightarrow \quad \frac{1}{C_{1}} \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=\frac{1}{C_{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t} \mathrm{~d} t=\frac{1}{C_{3}} \frac{\mathrm{~d} z}{\mathrm{~d} t} \mathrm{~d} t \quad \Rightarrow \quad \frac{1}{C_{1}} \mathrm{~d} x=\frac{1}{C_{2}} \mathrm{~d} y=\frac{1}{C_{3}} \mathrm{~d} z \tag{1.9}
\end{equation*}
$$

which may be integrated to give

$$
\begin{equation*}
\int \frac{1}{C_{1}} \mathrm{~d} x=\int \frac{1}{C_{2}} \mathrm{~d} y=\int \frac{1}{C_{3}} \mathrm{~d} z \quad \Rightarrow \quad \frac{1}{C_{1}} x+C_{4}=\frac{1}{C_{2}} y+C_{5}=\frac{1}{C_{3}} z+C_{6} \tag{1.10}
\end{equation*}
$$

which is a general equation of a straight line, where the integration constants may be adjusted to fit the line to the end points.

2 Stationary Integral

Find $y(x)$ such that the following integral is stationary,

$$
\begin{equation*}
J=\int_{x_{1}}^{x_{2}} \sqrt{x} \sqrt{1+y^{\prime 2}} \mathrm{~d} x \tag{2.1}
\end{equation*}
$$

where $y^{\prime} \equiv \frac{\mathrm{d} y}{\mathrm{~d} x}$.

2.0 solution

The functional

$$
\begin{equation*}
f=\sqrt{x} \sqrt{1+y^{\prime 2}} \tag{2.2}
\end{equation*}
$$

must satisfy Euler's equation

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial f}{\partial y^{\prime}}=0 \tag{2.3}
\end{equation*}
$$

where $y^{\prime} \equiv \frac{\mathrm{d} y}{\mathrm{~d} x}$. So

$$
\begin{equation*}
0-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sqrt{x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)=0 \quad \Rightarrow \quad \sqrt{x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=c_{1} \tag{2.4}
\end{equation*}
$$

where we introduce the constant of integration c_{1}. We may rewrite equation 2.4 as

$$
\begin{align*}
& \sqrt{x} y^{\prime}=c_{1} \sqrt{1+y^{\prime 2}} \Rightarrow x y^{\prime 2}=c_{1}^{2}\left(1+y^{\prime 2}\right) \quad \Rightarrow \quad x y^{\prime 2}=c_{1}^{2}+c_{1}^{2} y^{\prime 2} \quad \Rightarrow \quad x y^{\prime 2}-c_{1}^{2} y^{\prime 2}=c_{1}^{2} \\
& \Rightarrow y^{\prime 2}\left(x-c_{1}^{2}\right)=c_{1}^{2} \Rightarrow y^{\prime 2}=\frac{c_{1}^{2}}{x-c_{1}^{2}} \Rightarrow y^{\prime}= \pm \frac{c_{1}}{\sqrt{x-c_{1}^{2}}} \Rightarrow y= \pm \int \frac{c_{1} \mathrm{~d} x}{\sqrt{x-c_{1}^{2}}} \tag{2.5}\\
& \Rightarrow y= \pm c_{1} \int \frac{\mathrm{~d}\left(x-c_{1}^{2}\right)}{\sqrt{x-c_{1}^{2}}} \Rightarrow y= \pm 2 c_{1} \sqrt{x-c_{1}^{2}}+c_{2} \tag{2.6}
\end{align*},
$$

where c_{2} is another integration constant.

3 Geodesic: Shortest path on a Circular Cylinder, Three Ways

3.1 Using One Dependent Variable $z(\phi)$

Show that the shortest path between two points on a circular cylinder is along a helix. Do this with the assumption that, $z(\phi)$ may be written as a function of ϕ in cylindrical coordinates (r, ϕ, z) with r being a constant. The equation of a helix in cylindrical coordinates is $z=C_{1} \phi+C_{2}$ where C_{1} and C_{2} are constants.

3.1 solution

The length of the line using cylindrical coordinates (r, ϕ, z) can be written as

$$
\begin{equation*}
J=\int \sqrt{(\mathrm{d} r)^{2}+(r \mathrm{~d} \phi)^{2}+(\mathrm{d} z)^{2}}=\int \sqrt{(R \mathrm{~d} \phi)^{2}+(\mathrm{d} z)^{2}} \tag{3.1}
\end{equation*}
$$

where the integration limits are at two points on the cylinder, and we have imposed the equation of a cylinder $r=R$, where R is the constant radius of the cylinder. Since we only have two variables, z and ϕ, we can choose that the z is the dependent variable, and ϕ is the independent variable giving

$$
\begin{equation*}
J=\int \sqrt{(R \mathrm{~d} \phi)^{2}+\left(\frac{\mathrm{d} z}{\mathrm{~d} \phi} \mathrm{~d} \phi\right)^{2}}=\int \sqrt{R^{2}+{z^{\prime 2}}^{2}} \mathrm{~d} \phi \tag{3.2}
\end{equation*}
$$

where $z^{\prime} \equiv \frac{\mathrm{d} z}{\mathrm{~d} \phi}$. We make J stationary with Euler's equation,

$$
\begin{equation*}
\frac{\partial f}{\partial z}-\frac{\mathrm{d}}{\mathrm{~d} \phi} \frac{\partial f}{\partial z^{\prime}}=0 \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
f=\sqrt{R^{2}+z^{\prime 2}} \tag{3.4}
\end{equation*}
$$

This gives

$$
\begin{equation*}
0-\frac{\mathrm{d}}{\mathrm{~d} \phi}\left(\frac{z^{\prime}}{\sqrt{R^{2}+{z^{\prime 2}}^{2}}}\right)=0 \quad \Rightarrow \quad \frac{z^{\prime}}{\sqrt{R^{2}+z^{\prime 2}}}=c_{1}, \tag{3.5}
\end{equation*}
$$

where c_{1} is a constant of integration. Solving for z we get

$$
\begin{align*}
& z^{\prime}=c_{1} \sqrt{R^{2}+z^{\prime 2}} \Rightarrow z^{\prime 2}=c_{1}^{2}\left(R^{2}+z^{\prime 2}\right) \Rightarrow z^{\prime 2}\left(1-c_{1}^{2}\right)=c_{1}^{2} R^{2} \Rightarrow z^{\prime}=\frac{c_{1} R}{\sqrt{1-c_{1}^{2}}} \\
& \Rightarrow \int z^{\prime} \mathrm{d} \phi=\int \frac{c_{1} R}{\sqrt{1-c_{1}^{2}}} \mathrm{~d} \phi \Rightarrow \int \mathrm{~d} z=\frac{c_{1} R}{\sqrt{1-c_{1}^{2}}} \phi+c_{2} \Rightarrow z=\frac{c_{1} R}{\sqrt{1-c_{1}^{2}}} \phi+c_{2} \tag{3.6}
\end{align*}
$$

which is an equation of a helix.

3.2 With Two Dependent Variables

Show that the shortest path between two points on a circular cylinder is along a helix. Do this using cylindrical coordinates with the variables $(r, \phi(t), z(t))$. That is $\phi(t)$, and $z(t)$ are dependent on an independent variable t, and r being a constant. Note: You do not have to solve the t dependence of ϕ and z.

3.2 solution

The length of the line using cylindrical coordinates (r, ϕ, z) can be written as

$$
\begin{equation*}
J=\int \sqrt{(\mathrm{d} r)^{2}+(r \mathrm{~d} \phi)^{2}+(\mathrm{d} z)^{2}}=\int \sqrt{(R \mathrm{~d} \phi)^{2}+(\mathrm{d} z)^{2}} \tag{3.7}
\end{equation*}
$$

where the integration limits are at two points on the cylinder, and we have imposed the equation of a cylinder $r=R$, where R is the constant radius of the cylinder. Given that $\phi(t)$, and $z(t)$ are dependent on an independent variable t we have

$$
\begin{equation*}
J=\int \sqrt{\left(R \frac{\mathrm{~d} \phi}{\mathrm{~d} t} \mathrm{~d} t\right)^{2}+\left(\frac{\mathrm{d} z}{\mathrm{~d} t} \mathrm{~d} t\right)^{2}}=\int \sqrt{R^{2}{\phi^{\prime}}^{2}+{z^{\prime}}^{2}} \mathrm{~d} t \tag{3.8}
\end{equation*}
$$

where $z^{\prime} \equiv \frac{\mathrm{d} z}{\mathrm{~d} t}$, and $\phi^{\prime} \equiv \frac{\mathrm{d} \phi}{\mathrm{d} t}$. We make J stationary (minimum) with the Euler equations,

$$
\begin{equation*}
\frac{\partial f}{\partial z}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial f}{\partial z^{\prime}}=0 \quad \frac{\partial f}{\partial \phi}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial f}{\partial \phi^{\prime}}=0 \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
f=\sqrt{R^{2} \phi^{\prime 2}+z^{\prime 2}} \tag{3.10}
\end{equation*}
$$

This gives
and

$$
\begin{equation*}
0-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{R^{2} \phi^{\prime}}{\sqrt{R^{2}{\phi^{\prime}}^{2}+{z^{\prime 2}}^{\prime}}}\right)=0 \quad \Rightarrow \quad \frac{R^{2} \phi^{\prime}}{\sqrt{R^{2}{\phi^{\prime}}^{2}+{z^{\prime 2}}^{2}}}=c_{2} \quad \Rightarrow \quad \frac{R^{2} \phi^{\prime}}{c_{2}}=\sqrt{R^{2}{\phi^{\prime}}^{2}+z^{\prime 2}} \tag{3.12}
\end{equation*}
$$

where c_{1} and c_{2} are constants of integration. Subtracting the last equation in 3.12 from the last equation in 3.11 gives

$$
\begin{equation*}
\frac{z^{\prime}}{c_{1}}-\frac{R^{2} \phi^{\prime}}{c_{2}}=0 \quad \Rightarrow \quad \frac{1}{c_{1}} z^{\prime} \mathrm{d} t=\frac{1}{c_{2}} R^{2} \phi^{\prime} \mathrm{d} t \quad \Rightarrow \quad \frac{1}{c_{1}} \int \mathrm{~d} z=\frac{1}{c_{2}} R^{2} \int \mathrm{~d} \phi \quad \Rightarrow \quad z=\frac{c_{1}}{c_{2}} R^{2} \phi+c_{3} \tag{3.13}
\end{equation*}
$$

which is an equation of a helix.

4

3.3 With an Equation of Constraint and Three Dependent Variables

Show that the shortest path between two points on a circular cylinder is along a helix. Do this using cylindrical coordinates with the variables $(r(t), \phi(t), z(t))$ all dependent on an independent variable t, and with the constraint that $r=a$, where a is a constant. Note: There's not much different between this and the last sub-problem.

3.3 solution

The length of the line using cylindrical coordinates (r, ϕ, z) can be written as

$$
\begin{equation*}
J=\int \sqrt{(\mathrm{d} r)^{2}+(r \mathrm{~d} \phi)^{2}+(\mathrm{d} z)^{2}} \tag{3.14}
\end{equation*}
$$

where the integration limits are at two points on the cylinder. Given that $r(t), \phi(t)$, and $z(t)$ are dependent on an independent variable t we have
where $r^{\prime} \equiv \frac{\mathrm{d} r}{\mathrm{~d} t}, \phi^{\prime} \equiv \frac{\mathrm{d} \phi}{\mathrm{d} t}$, and $z^{\prime} \equiv \frac{\mathrm{d} z}{\mathrm{~d} t}$. We make J stationary (minimum) with the Euler equations,

$$
\begin{equation*}
\frac{\partial f}{\partial r}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial f}{\partial r^{\prime}}+\lambda(t) \frac{\partial g}{\partial r}=0 \quad \frac{\partial f}{\partial \phi}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial f}{\partial \phi^{\prime}}+\lambda(t) \frac{\partial g}{\partial \phi}=0 \quad \frac{\partial f}{\partial z}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial f}{\partial z^{\prime}}+\lambda(t) \frac{\partial g}{\partial z}=0 \tag{3.16}
\end{equation*}
$$

where $\lambda(t)$ is the Lagrange undetermined multiplier,

$$
\begin{equation*}
f=\sqrt{{r^{\prime}}^{2}+r^{2}{\phi^{\prime}}^{2}+{z^{\prime}}^{2}} \tag{3.17}
\end{equation*}
$$

and we have the equation of constraint $g(r)=r-R=0$, where R is the constant radius of the cylinder. The equation of constraint $g(r)$ makes solving for $r(t)$ trivial, giving $r(t)=R$ and $r^{\prime}=0$. The Euler equations for ϕ and z give
and
where c_{1} and c_{2} are constants of integration. Subtracting the last equation in 3.18 from the last equation in 3.19 gives

$$
\begin{equation*}
\frac{z^{\prime}}{c_{2}}-\frac{R^{2} \phi^{\prime}}{c_{1}}=0 \quad \Rightarrow \quad \frac{1}{c_{2}} z^{\prime} \mathrm{d} t=\frac{1}{c_{1}} R^{2} \phi^{\prime} \mathrm{d} t \quad \Rightarrow \quad \frac{1}{c_{2}} \int \mathrm{~d} z=\frac{1}{c_{1}} R^{2} \int \mathrm{~d} \phi \quad \Rightarrow \quad z=\frac{c_{2}}{c_{1}} R^{2} \phi+c_{3} \tag{3.20}
\end{equation*}
$$

which is an equation of a helix.
4

4 Minimum Area of Revolution

A surface is generated by revolving a curve $y(x)$, that connects two points in the $x-y$ plane, around the x axis. Find this curve such that the surface area is a minimum. Consider using the second form of Euler's equation.

4.0 solution

We minimize

$$
\begin{equation*}
J=\int_{x_{1}}^{x_{2}} 2 \pi y \mathrm{~d} s=2 \pi \int_{x_{1}}^{x_{2}} y \sqrt{(\mathrm{~d} x)^{2}+(\mathrm{d} y)^{2}}=2 \pi \int_{x_{1}}^{x_{2}} y \sqrt{1+y^{\prime 2}} \mathrm{~d} x \tag{4.1}
\end{equation*}
$$

where $y^{\prime} \equiv \frac{\mathrm{d} y}{\mathrm{~d} x}$. For J to be a minimum, J must be stationary. J will be stationary if

$$
\begin{equation*}
f \equiv y \sqrt{1+y^{\prime 2}} \tag{4.2}
\end{equation*}
$$

satisfies Euler's equation,

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial f}{\partial y^{\prime}}=0 \tag{4.3}
\end{equation*}
$$

Plugging in f into Euler's equation gives

$$
\begin{equation*}
\sqrt{1+y^{\prime 2}}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right) \Rightarrow \sqrt{1+y^{\prime 2}}-\frac{y y^{\prime \prime}}{\sqrt{1+y^{\prime 2}}}-\frac{y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}+\frac{y y^{\prime 2} y^{\prime \prime}}{\left(1+{y^{\prime}}^{2}\right)^{\frac{3}{2}}}=0 \tag{4.4}
\end{equation*}
$$

where $y^{\prime \prime} \equiv \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. Multiplying by $\left(1+y^{\prime 2}\right)^{\frac{3}{2}}$ gives

$$
\begin{align*}
& \left(1+y^{\prime 2}\right)^{2}-y y^{\prime \prime}\left(1+y^{\prime 2}\right)-y^{\prime 2}\left(1+y^{\prime 2}\right)+y y^{\prime 2} y^{\prime \prime}=0 \tag{4.5}\\
& \Rightarrow \quad 1+2{y^{\prime}}^{2}+y^{\prime 4}-y y^{\prime \prime}-y y^{\prime 2} y^{\prime \prime}-y^{\prime 2}-y^{\prime 4}+y y^{\prime 2} y^{\prime \prime}=0 \tag{4.6}\\
& \Rightarrow \quad 1+y^{\prime 2}-y y^{\prime \prime}=0 \quad \Rightarrow \quad 1+y^{\prime 2}=y y^{\prime \prime} \tag{4.7}
\end{align*}
$$

Assuming that y^{\prime} can be expressed as a function of y we get,

$$
\begin{equation*}
y^{\prime \prime}=\frac{\mathrm{d} y^{\prime}}{\mathrm{d} x}=\frac{\mathrm{d} y^{\prime}}{\mathrm{d} y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y^{\prime}}{\mathrm{d} y} y^{\prime} \tag{4.8}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
1+y^{\prime 2}=y \frac{\mathrm{~d} y^{\prime}}{\mathrm{d} y} y^{\prime} \quad \Rightarrow \quad \frac{\mathrm{d} y}{y}=\frac{y^{\prime} \mathrm{d} y^{\prime}}{1+y^{\prime 2}} \quad \Rightarrow \quad \int \frac{\mathrm{~d} y}{y}=\frac{1}{2} \int \frac{\mathrm{~d}\left(1+y^{\prime 2}\right)}{1+y^{\prime 2}} \quad \Rightarrow \quad \ln y=\frac{1}{2} \ln \left(1+y^{\prime 2}\right)+c_{1} \tag{4.9}
\end{equation*}
$$

where c_{1} is a constant of integration. This gives

$$
\begin{equation*}
\ln \left(\frac{y}{\sqrt{1+y^{\prime 2}}}\right)=c_{1} \quad \Rightarrow \quad \frac{y}{\sqrt{1+y^{\prime 2}}}=C_{1} \tag{4.10}
\end{equation*}
$$

where $C_{1} \equiv e^{c_{1}}$. So

$$
\begin{align*}
& y=C_{1} \sqrt{1+y^{\prime 2}} \Rightarrow y^{2}=C_{1}^{2}\left(1+y^{\prime 2}\right) \Rightarrow y^{2}=C_{1}^{2}+C_{1}^{2} y^{\prime 2} \Rightarrow y^{2}-C_{1}^{2}=C_{1}^{2} y^{\prime 2} \tag{4.11}\\
& \Rightarrow \sqrt{y^{2}-C_{1}^{2}}=C_{1} y^{\prime} \Rightarrow \quad \mathrm{d} x=C_{1} \frac{y^{\prime} \mathrm{d} x}{\sqrt{y^{2}-C_{1}^{2}}} \tag{4.12}\\
& \Rightarrow \quad \mathrm{~d} x=C_{1} \int \frac{\mathrm{~d} y}{\sqrt{y^{2}-C_{1}^{2}}} \Rightarrow x=C_{1} \cosh ^{-1} \frac{y}{C_{1}}+C_{2} \quad \Rightarrow \quad y(x)=\cosh \frac{x-C_{2}}{C_{1}} \tag{4.13}
\end{align*}
$$

If we used the second form of Euler's equation,

$$
\begin{equation*}
\frac{\partial f}{\partial x}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}\right)=0 \tag{4.14}
\end{equation*}
$$

with f from equation 4.2 we get

$$
\begin{equation*}
-\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \sqrt{1+y^{\prime 2}}-\frac{y y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}\right)=0 \quad \Rightarrow \quad y \sqrt{1+y^{\prime 2}}-\frac{y y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}=C_{1} \tag{4.15}
\end{equation*}
$$

where C_{1} is an integration constant. By multiplying by $\sqrt{1+y^{\prime 2}}$ we get

$$
\begin{equation*}
\Rightarrow \quad y+y y^{\prime 2}-y y^{\prime 2}=C_{1} \sqrt{1+y^{\prime 2}} \Rightarrow y=C_{1} \sqrt{1+y^{\prime 2}} \tag{4.16}
\end{equation*}
$$

which is the same as the first equation in 4.11 . So the result will be the same and we see this way is a little quicker.

5 Shape of a Hanging Cable

A cable with uniform linear mass density, and a fixed length l is hung across space while gravity pulls down on it causing the cable to sag between the two points at the ends of the cable. The total gravitational potential energy ($m g y$) from the earth pulling down on the cable is a minimum. What is the general shape of the cable, $y(x)$. Hint: Use the method on page 222 of Thorton and Marion.

5.0 solution

Let ρ be the linear mass density of the cable. Letting gravity act in the minus y direction, the gravitational potential energy of the cable is

$$
\begin{equation*}
J=\int_{x_{1}}^{x_{2}}(\mathrm{~d} m) g y=\int_{x_{1}}^{x_{2}}(\rho \mathrm{~d} s) g y=\rho g \int_{x_{1}}^{x_{2}} y \sqrt{1+y^{\prime 2}} \mathrm{~d} x \tag{5.1}
\end{equation*}
$$

The constraint that the cable has a total length l can be written as

$$
\begin{equation*}
l=\int_{x_{1}}^{x_{2}} \mathrm{~d} s=\int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime 2}} \mathrm{~d} x \tag{5.2}
\end{equation*}
$$

We set $f=y \sqrt{1+y^{\prime 2}}$ and $g=\sqrt{1+y^{\prime 2}}$ so for J to be a minimum, it must be stationary, and so (from equation 6.78 in Thorton and Marion)

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial f}{\partial y^{\prime}}+\lambda\left(\frac{\partial g}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial g}{\partial y^{\prime}}\right)=0 \tag{5.3}
\end{equation*}
$$

where λ is a Lagrange undetermined multiplier constant. This gives

$$
\begin{align*}
& \sqrt{1+y^{\prime 2}}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)-\lambda \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)=0 . \\
& \Rightarrow \sqrt{1+y^{\prime 2}}-\frac{y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}-y \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)-\lambda \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)=0 \\
& \Rightarrow \frac{1}{\sqrt{1+y^{\prime 2}}}-(y+\lambda) \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)=0 \\
& \Rightarrow \frac{1}{\sqrt{1+y^{\prime 2}}}-(y+\lambda)\left(\frac{y^{\prime \prime}}{\sqrt{1+y^{\prime 2}}}-\frac{y^{\prime 2} y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}\right)=0 . \\
& \Rightarrow \frac{1}{\sqrt{1+y^{\prime 2}}}-(y+\lambda) \frac{y^{\prime \prime}\left(1+y^{\prime 2}\right)-y^{\prime 2} y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}=0 \Rightarrow \frac{1}{\sqrt{1+y^{\prime 2}}}-(y+\lambda) \frac{y^{\prime \prime}+y^{\prime 2} y^{\prime \prime}-y^{\prime 2} y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}=0 \\
& \Rightarrow \frac{1}{\sqrt{1+y^{\prime 2}}}-(y+\lambda) \frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}=0 \tag{5.4}
\end{align*}
$$

Multiplying by $\left(1+y^{\prime 2}\right)^{\frac{3}{2}}$ gives

$$
\begin{align*}
& \Rightarrow 1+y^{\prime 2}-(y+\lambda) y^{\prime \prime}=0 \quad \Rightarrow \quad 1+y^{\prime 2}=(y+\lambda) y^{\prime \prime} \quad \Rightarrow \quad 1+y^{\prime 2}=(y+\lambda) \frac{\mathrm{d} y^{\prime}}{\mathrm{d} y} y^{\prime} \\
& \Rightarrow \quad \frac{\mathrm{d} y}{y+\lambda}=\frac{y^{\prime} \mathrm{d} y^{\prime}}{1+y^{\prime 2}} \quad \Rightarrow \quad \int \frac{\mathrm{~d} y}{y+\lambda}=\int \frac{y^{\prime} \mathrm{d} y^{\prime}}{1+y^{\prime 2}} \quad \Rightarrow \quad \int \frac{\mathrm{~d}(y+\lambda)}{y+\lambda}=\frac{1}{2} \int \frac{\mathrm{~d}\left(1+y^{\prime 2}\right)}{1+y^{\prime 2}} . \tag{5.5}
\end{align*}
$$

We note that we just solved an equation like this from the previous problem in 4.9, but with $y+\lambda \rightarrow y$, and so the solution, from equation 4.13, is

$$
\begin{equation*}
y+\lambda=\cosh \frac{x-C_{2}}{C_{1}} \Rightarrow y(x)=-\lambda+\cosh \frac{x-C_{2}}{C_{1}} \tag{5.6}
\end{equation*}
$$

so the general shape is a hyperbolic cosine function.

