1 Pendulum with Vertically Moving Pivot

A frictionless pendulum swings in the $x-y$ plane. The x direction is down in the direction of the uniform gravitational field g. The y direction is to the right. The pendulum bob has a mass of m. The pendulum has a length l. The position of the pivot point of the pendulum is moving (up and down) along the x-direction with the pivot position given by $x_{s}(t)$.

1.1 Lagrangian

Find the Lagrangian for this system $L(\theta, \dot{\theta}, t)$ where θ is the angle that the pendulum makes with the (vertical) x axis toward the y axis. Answer in terms of $m, g, l, x_{s}(t), \dot{x}_{s}(t), \theta$, and $\dot{\theta}$. You may consider $x_{s}(t)$ and $\dot{x}_{s}(t)$ as given functions of t, so $L(\theta, \dot{\theta}, t)=L\left(\theta, \dot{\theta}, x_{s}(t), \dot{x}_{s}(t)\right)$
1.1 solution

In order to find T, the kinetic energy, we'll first calculate v^{2}, the speed squared for the bob, as a function of θ and $\dot{\theta}$. Using the figure above we get the position of the bob, \vec{r}, relative to the point \mathbf{P} which is not moving.

$$
\begin{align*}
& \left.\vec{r}=\left(x+x_{s}\right) \hat{x}+y \hat{y}=\left(l \cos \theta+x_{s}\right) \hat{x}+l \sin \theta \hat{y} \Rightarrow v^{2}=(\dot{\vec{r}})^{2}=\left(-l \dot{\theta} \sin \theta+\dot{x}_{s}\right)^{2}+(l \dot{\theta} \cos \theta)^{2}=-2 l \dot{x}_{s} \sin \theta+\dot{x}_{s}\right) \hat{x}+l \dot{\theta} \cos \theta \hat{y} \tag{1.1}\\
& \Rightarrow l^{2} \dot{\theta}^{2} \sin ^{2} \theta+l^{2} \dot{\theta}^{2} \cos ^{2} \theta \tag{1.2}\\
& =-2 l \dot{x}_{s} \dot{\theta} \sin \theta+\dot{x}_{s}^{2}+l^{2} \dot{\theta}^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=-2 l \dot{x}_{s} \dot{\theta} \sin \theta+\dot{x}_{s}^{2}+l^{2} \dot{\theta}^{2} \tag{1.3}
\end{align*}
$$

So

$$
\begin{align*}
& L=T-U=\frac{1}{2} m v^{2}-\left(-m g\left(x+x_{s}\right)\right)=\frac{1}{2} m l^{2} \dot{\theta}^{2}+\frac{1}{2} m \dot{x}_{s}^{2}-m l \dot{x}_{s} \dot{\theta} \sin \theta+m g l \cos \theta+m g x_{s} \tag{1.4}\\
& \Rightarrow \quad L=\frac{1}{2} m l^{2} \dot{\theta}^{2}+\frac{1}{2} m \dot{x}_{s}^{2}(t)-m l \dot{x}_{s}(t) \dot{\theta} \sin \theta+m g l \cos \theta+m g x_{s}(t) \tag{1.5}
\end{align*}
$$

\uparrow

1.2 Equations of Motion

Using this Lagrangian find the equations of motion for θ (something like $\ddot{\theta}=?$). Answer in terms of $m, g, l, x_{s}(t), \dot{x}_{s}(t)$, $\ddot{x}_{s}(t), \theta, \dot{\theta}$, and $\ddot{\theta}$.

\uparrow

1.2 solution

$$
\frac{\partial L}{\partial \theta}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\theta}}=0 \quad \Rightarrow \quad-m l \dot{x}_{s} \dot{\theta} \cos \theta-m g l \sin \theta-\frac{\mathrm{d}}{\mathrm{~d} t}\left(m l^{2} \dot{\theta}-m l \dot{x}_{s} \sin \theta\right)
$$

$$
\begin{align*}
& \Rightarrow \quad-m l \dot{x}_{s} \dot{\theta} \cos \theta-m g l \sin \theta-m l^{2} \ddot{\theta}+m l \ddot{x}_{s} \sin \theta+m l \dot{x}_{s} \dot{\theta} \cos \theta=0 \\
& \Rightarrow \quad m l^{2} \ddot{\theta}=-m g l \sin \theta+m l \ddot{x}_{s} \sin \theta \\
& \Rightarrow \quad \ddot{\theta}=-\frac{g}{l} \sin \theta+\frac{\ddot{x}_{s}(t)}{l} \sin \theta \tag{1.6}
\end{align*}
$$

