1 Pendulum with Vertically Moving Pivot

A frictionless pendulum swings in the $x-y$ plane. The x direction is down in the direction of the uniform gravitational field g. The y direction is to the right. The pendulum bob has a mass of m. The pendulum has a length l. The position of the pivot point of the pendulum is moving (up and down) along the x-direction with the pivot position given by $x_{s}(t)$.

1.1 Lagrangian

Find the Lagrangian for this system $L(\theta, \dot{\theta}, t)$ where θ is the angle that the pendulum makes with the (vertical) x axis toward the y axis. Answer in terms of $m, g, l, x_{s}(t), \dot{x}_{s}(t), \theta$, and $\dot{\theta}$. You may consider $x_{s}(t)$ and $\dot{x}_{s}(t)$ as given functions of t, so $L(\theta, \dot{\theta}, t)=L\left(\theta, \dot{\theta}, x_{s}(t), \dot{x}_{s}(t)\right)$

1.2 Equations of Motion

Using this Lagrangian find the equations of motion for θ (something like $\ddot{\theta}=?$). Answer in terms of $m, g, l, x_{s}(t), \dot{x}_{s}(t)$, $\ddot{x}_{s}(t), \theta, \dot{\theta}$, and $\ddot{\theta}$.

