1 Spinning Block and Hanging Weight using Lagrange Multiplier

A block, with mass m, slides without friction on a level table. A stretch-less, massless string connects this block to a hanging weight, with mass M, through a hole in the table. The block on the table can orbit around the table so that the angle θ and the radial distance r both change with time. When r changes the distance from the table to the hanging weight, x, changes too. This gives us the constraint equation $f=r+x-a=0$, where a is a constant. Consider your dynamical (generalized coordinate) variables to be θ, r, and x.

1.1 Find Equations of Motion

Find the equations of motion for θ, r, and x using a Lagrange multiplier λ, with the given constraint equation. You do not have to solve them, or solve for λ.
\dagger

1.1 solution

The Lagrangian is

$$
\begin{align*}
& L=T-U=T_{M}+T_{m}-U_{M}-U_{m}=\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-M g(-x)-0 \tag{1.1}\\
& \Rightarrow \quad L(\theta, r, x, \dot{\theta}, \dot{r}, \dot{x})=\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2}+M g x \tag{1.2}
\end{align*}
$$

Lagrange's equations with an undetermined multiplier λ for this system gives

$$
\begin{equation*}
\frac{\partial L}{\partial \theta}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\theta}}+\lambda \frac{\partial f}{\partial \theta}=0 \quad \frac{\partial L}{\partial r}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{r}}+\lambda \frac{\partial f}{\partial r}=0 \quad \frac{\partial L}{\partial x}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}}+\lambda \frac{\partial f}{\partial x}=0 \tag{1.3}
\end{equation*}
$$

This gives us

$$
\begin{array}{ll}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(m r^{2} \dot{\theta}\right)=0 \\
m r \dot{\theta}^{2}-\frac{\mathrm{d}}{\mathrm{~d} t}(m \dot{r})+\lambda[1]=0 & \Rightarrow \\
M g-\frac{\mathrm{d}}{\mathrm{~d} t}(M \dot{x})+\lambda[1]=0 \quad & \Rightarrow \quad M r \dot{\theta}^{2}+\lambda \tag{1.6}\\
& M \ddot{x}=M g+\lambda
\end{array}
$$

and the equation of constraint gives

$$
\begin{equation*}
\ddot{r}+\ddot{x}=0 \text {. } \tag{1.7}
\end{equation*}
$$

1.2 Remove the $\dot{\theta}$ Dependence in the r Equation

The integration constant for the θ equation is the angular momentum of the block about the hole, l. Find the first integral of the θ equation and remove the $\dot{\theta}$ in the r equation of motion.

\upharpoonright

1.2 solution

From equation 1.4

$$
\begin{equation*}
m r^{2} \dot{\theta}=l \text {. } \tag{1.8}
\end{equation*}
$$

Plugging $\dot{\theta}$ into equation 1.5 gives

$$
\begin{equation*}
m \ddot{r}=m r\left(\frac{l}{m r^{2}}\right)^{2}+\lambda \quad \Rightarrow \quad m \ddot{r}=\frac{l^{2}}{m r^{3}}+\lambda \tag{1.9}
\end{equation*}
$$

4

1.3 Lagrange Multiplier, λ

Physically what is the Lagrange multiplier, λ ? In general, is it constant or a function of time? Justify your answer.

1.3 solution

Computing the force associated with the constraint of the string we get

$$
\begin{equation*}
\mathcal{Q}_{x}=\lambda \frac{\partial f}{\partial x}=\lambda[1]=\lambda \tag{1.10}
\end{equation*}
$$

as we computed before in equation 1.6. λ is a force of constraint from the string. This force is in the plus x direction which is opposite the direction of the tension in the string, so λ is minus the tension in the string .

We can put together all the equations of motion (equation 1.5 minus equation 1.6 and setting \ddot{x} to $-\ddot{r}$ from equation 1.7) to get

$$
\begin{equation*}
(M+m) \ddot{r}=\frac{l^{2}}{m r^{3}}-M g \tag{1.11}
\end{equation*}
$$

which shows that \ddot{r} does not have to be constant and if \ddot{r} is not constant neither is \ddot{x}, and from equation 1.6 neither is λ. So λ is a function of time in general.

