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1 Sliding Car

A car traveling down an incline with a 8% grade (raise/run) locks his brakes and skids 30 m before hitting a parked car.
The coefficient of kinetic friction between the tires and the road is µk = 0.45. Was the car exceeding the 25 MPH speed
limit? Explain.

? ?
1.0 solution

θ

θ

θ

µkN

x

y

mg
mg cos θ

mg sin θ

N

m

FBD car

The above figure shows a free body diagram (FBD) of the car. We let m be the mass of the car. Applying Newton’s
2nd law gives

∑

Fy = N − mg cos θ = 0 ⇒ N = mg cos θ (1.1)
∑

Fx = mg sin θ − µkN = max ⇒ max = mg sin θ − µkmg cos θ = mg (sin θ − µk cos θ)

⇒ ax = g (sin θ − µk cos θ) (1.2)

The car has constant acceleration in the x direction. So

ax =
dvx

dt
=

dvx

dx

dx

dt
=

dvx

dx
vx (1.3)

⇒ vxdvx = axdx ⇒ 1

2
v2

x = axx + c1 , (1.4)

where c1 is a constant. Given we set x = 0 when vx = vx,i, the initial speed, we find that the speed of the car along the
x direction, vx, as a function of the change in position x can be written as

v2
x = v2

x,i + 2ax x. (1.5)

By setting vx,i =30 mi/hr, vx = 0, θ = tan1 0.08, then x should be the distance the car would travel if the car was going
at the speed limit. With θ = tan1 0.08, sin θ = 0.08√

1+(0.08)2
≈ 0.0797452, and cos θ = 1√

1+(0.08)2
≈ 0.996815

x =
v2

x,i

2ax

= −
(

30 mi
hour

5280ft
mi

12in
ft

0.0254m
in

1hour
3600s

)2

2
(

9.8m
s2

)

[0.0797452− (0.45) 0.996815]
≈ 17.28 m. (1.6)

Therefore, he was speeding. So if he was going at 25 MPH he would have only skidded 17.28 meters. If he skidded 30

meters and than hit a parked car he had to have been traveling initially at at a higher speed. From equation 1.5 with

vx = 0 and ax < 0 we see that vx,i ∝
√

x, so v′x,i = vx,i

√

x′

x
= 25 MPH

√

30
17.27 = 32.9 MPH. So he was traveling at 32.9

MPH or faster.
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2 Grandfather Clock

A grandfather clock has a pendulum length of 0.7 m and a bob mass of 0.4 kg. A weight of mass 2 kg falls 0.8 m in seven
days to keep the amplitude (from equilibrium) of the pendulum oscillating steady at 0.03 rad. What is the quality factor,
Q, of this clock? Assume that all the energy is lost in the oscillating pendulum.
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? ?
2.0 solution

The amplitude of the swing is small so we approximate the pendulum as having simple harmonic motion with angu-
lar frequency of ω0 = g

l
. The definition of Q is

Q =
ωR

2β
, (2.1)

and

ωR =
√

ω2
0 − β2 ≈ ω0 =

√

g

l
, (2.2)

where g ≈ 9.8 m
s2 is the acceleration so to gravity at the surface of the earth, l is the length of the pendulum, and we

have assumed that β is small compared to ω0. We’ll check that later. So assuming β is small compared to ω0 we wish to
calculate

Q =
1

2β

√

g

l
, (2.3)

We can get β from the rate at which energy is being added to the pendulum by the falling weight. We start with the
energy in the pendulum E being

E = T + U =
1

2
ml2θ̇2 + mgl (1 − cos θ) =

1

2
ml2θ̇2 + mgl

(

1 − 1 +
1

2
θ2

)

=
1

2
ml2θ̇2 +

1

2
mglθ2, (2.4)

where we have used the small angle approximation for θ. The rate at which the energy in the pendulum changes, which
is the power to the pendulum, is

dE

dt
= ml2θ̇θ̈ + mglθθ̇ = ml2θ̇

(

θ̈ +
g

l
θ
)

. (2.5)

The equation of motion of the pendulum, that defines β in our case, is

θ̈ +
g

l
θ + 2βθ̇ = A cosωt ⇒ θ̈ +

g

l
θ = −2βθ̇ + A cosωt (2.6)

where A is the amplitude of the driving force, ω is the driving angular frequency, and t is time. Given this we may rewrite
equation 2.5 as

dE

dt
= ml2θ̇

(

−2βθ̇ + A cosωt
)

= −2ml2βθ̇2 + ml2θ̇A cosωt . (2.7)

The first term is the rate at which energy is being taken away due to friction (β), and the second term is the power from
the driver, Pin. The average power, over a period, into the pendulum does not change so we have

(

dE

dt

)

ave

= 0 = −2ml2β θ̇2
ave + Pin,ave ⇒ 2ml2βθ̇2

ave = Pin,ave , (2.8)

where Pin,ave is the average power from the driver. At steady state

θ(t) = D cos (ωt − δ) , (2.9)

where D is the amplitude of the pendulum motion, ω is the driving angular frequency, and δ is the phase constant.
Therefore

θ̇(t) = ωD cos (ωt − δ) ⇒ θ̇2(t) = ω2D2 cos2 (ωt − δ) ⇒ θ̇2
ave =

1

2
ω2D2 (2.10)

So with equation 2.8 we have

2ml2β

(

1

2
ω2D2

)

= Pin,ave =
Mgh

T
⇒ β =

1

ml2ω2D2

Mgh

T
≈ 1

ml2ω2
0D

2

Mgh

T
=

Mh

mlD2T
(2.11)
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where we have used the given information about the driving weight in the clock, M is the mass of the falling weight, h is
the height that the weight falls in time T , and we assumed that ω2 ≈ ω2

0 . We see that β2 ≈ 0.0002/s2 is much smaller
than ω2

0 ≈ 14/s2, and so our begining assumption in equation 2.2 was consistent. Putting it all together we get

Q ≈ 1

2β

√

g

l
=

1

2

(

Mh

mlD2T

)

−1√
g

l
=

mTD2

2Mh

√

gl =
(0.4kg) (7 3600 24 s) (0.03)

2
√

(

9.8 m
s2

)

(0.7 m)

2 (2 kg) (0.8 m)
= 178.2 . (2.12)

So

Q ≈ 178 . (2.13)
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3 Gravitation

A uniform solid sphere of mass M and a radius R is fixed a distance h above a thin infinite sheet ofq mass density ρs

(mass/area). h is greater than R. What is the force on the sheet from the sphere?

? ?
3.0 solution

g

A

Gaussian Surfaceρs

Applying the integral form of Gauss’s law to the infinite sheet of mass density ρs we get

∮

~g · d ~A = −4πGρsA = (g) (2A) ⇒ g = −2πGρs , (3.1)

where g is the magnitude of the gravitational field from the infinite sheet, and A is the surface area of the Gaussian that
is above and below the sheet. The force on the sheet from the sphere will be equal and opposite to the force on the sphere
from the sheet. The magnitude of that force is

Fg = Mg = 2πρsGM . (3.2)

You’ll get the same result by integrating the force from a small piece of the sheet d ~F over the infinite sheet. It’s more
work. You may consider that the sphere acts make a point particle mass.

6 6

4 A Particle in a Cone

A particle, with mass m, is constrained to move on the surface of a cone. The cone has it’s vertex pointing down in the
direction of gravity (g). The cone has a half-angle α.
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4.1 Lagrangian

Write the Lagrangian, L
(

r, φ, ṙ, φ̇
)

, in terms of spherical polar coordinates r, and φ, where the θ coordinate is fixed at

value α on the surface of the cone.

? ?
4.1 solution

The motion is constrained so that θ = α so θ̇ = 0.

L = T −U =
1

2
m
[

ṙr̂ + rθ̇θ̂ + r(sin θ)φ̇φ̂
]

·
[

ṙr̂ + rθ̇θ̂ + r(sin θ)φ̇φ̂
]

−mg (z) =
1

2
m
[

ṙ2 + r2(sin2 α)φ̇2
]

−mg (r cosα)

⇒ L
(

r, φ, ṙ, φ̇
)

=
1

2
mṙ2 +

1

2
mr2(sin2 α)φ̇2 − mgr cosα . (4.1)
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4.2 Equations of Motion

Find the equations of motion for r and φ. Interpret the φ equation in terms of the angular momentum along the z

direction, lz. Use lz to eliminate the φ̇ from the r equation of motion.

? ?
4.2 solution

∂L

∂r
− d

dt

∂L

∂ṙ
= 0 ⇒ mr(sin2 α)φ̇2 − mg cosα − d

dt
(mṙ) = 0 ⇒ r̈ = r(sin2 α)φ̇2 − g cosα (4.2)

∂L

∂φ
− d

dt

∂L

∂φ̇
= 0 ⇒ d

dt

(

mr2(sin2 α)φ̇
)

= 0 ⇒ mr2
(

sin2 α
)

φ̇ = lz . (4.3)

This gives

r̈ = r
(

sin2 α
)

(

lz

mr2 sin2 α

)2

− g cosα ⇒ r̈ =
l2z

m2r3 sin2 α
− g cosα (4.4)
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4.3 Find an Equilibrium r Position

Find the equilibrium r position, r0. Determine if this equilibrium r position is stable or not. If this position is stable,
find the frequency of oscillation about this equilibrium position.

? ?
4.3 solution

At equilibrium ¨r = r0 = 0 which gives

0 =
l2z

m2r3
0 sin2 α

− g cosα ⇒ r0 = 3

√

l2z

m2g sin2 α cosα
(4.5)

If this equilibrium r position is stable then

dr̈

dr

∣

∣

∣

∣

r=r0

< 0. (4.6)
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We have

dr̈

dr
= −3

l2z

m2r4 sin2 α
⇒ dr̈

dr

∣

∣

∣

∣

r=r0

= −3
l2z

m2
(

l2
z

m2g sin2 α cos α

)
4

3

sin2 α

= −3
3

√

m2g4 sin2 α cos4 α

l2z
(4.7)

So it is stable and the angular frequency of oscillation, ω0, is given by

−ω2
0 =

dr̈

dr

∣

∣

∣

∣

r=r0

⇒ ω0 =
√

3 3

√

mg2 sin α cos2 α

lz
. (4.8)
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5 Non-unique Lagrangian

Show that the if a Lagrangian L (q1, ..., qs, q̇1..., q̇s, t) is related to another Lagrangian L′ (q1, ..., qs, q̇1..., q̇s, t) by L′ =
L + dF

dt
, where F = F (q1, ..., qs, t), then the two Lagrangians will give exactly the same equations of motion.

? ?
5.0 solution

The equation of motion for qi from L′ is

∂L′

∂qi

− d

dt

∂L′

∂q̇i

= 0 ⇒ ∂

∂qi

(

L +
dF

dt

)

− d

dt

∂

∂q̇i

(

L +
dF

dt

)

= 0

⇒ ∂L

∂qi

− d

dt

∂L

∂q̇i

+
∂

∂qi

dF

dt
− d

dt

∂

∂q̇i

dF

dt
= 0 ⇒ ∂L

∂qi

− d

dt

∂L

∂q̇i

+
d

dt

(

∂

∂qi

F − ∂

∂q̇i

dF

dt

)

= 0

⇒ ∂L

∂qi

− d

dt

∂L

∂q̇i

+
d

dt

[

∂

∂qi

F − ∂

∂q̇i

(

∑

i

∂F

∂qi

q̇i +
∂F

∂t

)]

= 0 ⇒ ∂L

∂qi

− d

dt

∂L

∂q̇i

+
d

dt

[

∂F

∂qi

− ∂F

∂qi

]

= 0

⇒ ∂L

∂qi

− d

dt

∂L

∂q̇i

= 0 , (5.1)

which is the same as the equation of motion for L.
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