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1 Bead on a Spinning Wire

This walks you through the problem.

A bead, with mass m, slides without friction on a long straight wire. The wire is spinning about one end at a constant
angular speed w. Let r be the position of the bead on the wire as measured from the point of rotation of the wire. There
is no gravity. All the motion is in a plane.

1.1 Lagrangian

In terms of 7, 7, m, w, and ¢, write an expression for the Lagrangian L (r, 7, t) for this system. Note that U = 0.

* | 1.1 solution | *

1 1 1 : 1 1
L=T-U= om (7* +r’w?) — 0= §m7'°2 + §mr26‘ = |L(r,7) = §mf2 + Emrgw2 . (1.1)

1.2 Lagrange’s Equation of Motion

Using your Lagrangian, find the equation of motion for r.

* | 1.2 solution | *

L doL
8___8_ 0 = mrw?

d . N 2
or  dt oF =0 = [F=re ] (1.2)

1.3 Canonical Conjugate Momentum

oL
9q;

The canonical momentum that is conjugate to r is p, = %. Find the canonical momentum that is conjugate to r, p,,
as a function of r, 7, w, and t.

In general, the canonical momentum that is conjugate (paired) to generalized position ¢; is pg, = p; =

* | 1.3 solution | *
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1.4 Hamiltonian

The Hamiltonian in general can be defined as

H (g, prot) =Y pidy — L (qrs i t) (1.4)
J
where the Hamiltonian must be written as a function of just the dependent dynamical variables ¢, px, and t. There must
be no ¢ dependence in H. So we are assuming that ¢; can be written as a function of g, px, and ¢, in order to make
this transformation.
In our case H(r,p,) = p.7 — L (r,7). In terms of r, p,, m, and w, find the Hamiltonian, H(r, p,, ) for this system.

* | 1.4 solution | *

From this definition of H we get

1 1 "
H=p.r— <§mi‘2 + imr2w2) =Dy (p_) —

2

\2 1 1
m (p_) - §mr2w2 = | H(r,p,) = 2177:? - 5mr2wQ . (1.5)

1.5 Hamilton’s Equations of Motion

In Lagrangian dynamics, for each generalized position, ¢;, (i = 1,2,...s) there is an equation of motion that is a second-
order ordinary differential equation. In Hamiltonian Dynamics, for each corresponding second-order differential equation
of Lagrangian dynamics there are two first-order ordinary differential equations, one of the generalized position, ¢;, and
one for the corresponding canonical momentum, p,, = p;. These Hamiltonian equations of motion are gotten from the
Hamiltonian like so
0H OH
i = and p; = — 1.6
4= p pi 9 (1.6)
Use the Hamiltonian that you just calculated and equations 1.6 to find the equations of motion for r and p,., and show

that these equations of motion for r and p, are equivalent to the equation of motion from section 1.2.

* | 1.5 solution | *

. _OH p, . Dr
" op. m " m | (1.7)

b= o) = [pmmnd] 18

From equation 1.7 and equation 1.8

7= ip} = i (mrw2) =rw
m m

and

2 = P = Tu}2 , (19)

which is equation 1.2. So the equations of motion from Lagrangian dynamics and Hamiltonian Dynamics are equivalent.

{ }
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1.6 Energy vs Hamiltonian

In terms of r, p,, m, w, and ¢, (a) find the difference between the total energy E and the Hamiltonian H for this system

(E— H). (b) Is H constant in time? (c) Is E constant in time? Note that £ =T = L. Explain you results.

'

1 1
F—-—H= (—mi‘2 + —mr2w2) — <

=

dH d [(p? 1
r = T (pr — —mr2w2> = %p’r — mw?ri = % (mrwz) — mw?r

2 2

(a)E—H = mriw?|.

2m 2

1.6 solution |

)0
m

where we have used the equations of motion for p, = mrw? and 7 = 2=. So ‘ (b) H is constant | .

e _ d
de — dt

2 2

So ‘ (c) E is not constant ‘ .

t

1 1
(_mf‘z + —m’I”QWQ) - &pr + mw27“7'“ = QTPTWQ )
m

(1.10)

(1.11)

(1.12)




