1 Bead on a Spinning Wire

This walks you through the problem.

A bead, with mass m, slides without friction on a long straight wire. The wire is spinning about one end at a constant angular speed ω. Let r be the position of the bead on the wire as measured from the point of rotation of the wire. There is no gravity. All the motion is in a plane.

1.1 Lagrangian

In terms of r, \dot{r}, m, ω, and t, write an expression for the Lagrangian $L(r, \dot{r}, t)$ for this system. Note that $U=0$.
1.1 solution
$L=T-U=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \omega^{2}\right)-0=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\theta} \Rightarrow L(r, \dot{r})=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \omega^{2}$.

4

1.2 Lagrange's Equation of Motion

Using your Lagrangian, find the equation of motion for r.

†
$\frac{\partial L}{\partial r}-\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{r}}=0 \quad \Rightarrow \quad m r \omega^{2}-\frac{\mathrm{d}}{\mathrm{d} t} m \dot{r}=0 \quad \Rightarrow \quad \ddot{r}=r \omega^{2}$.

1.3 Canonical Conjugate Momentum

In general, the canonical momentum that is conjugate (paired) to generalized position q_{i} is $p_{q_{i}} \equiv p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}$.
The canonical momentum that is conjugate to r is $p_{r} \equiv \frac{\partial L}{\partial \dot{r}}$. Find the canonical momentum that is conjugate to r, p_{r}, as a function of r, \dot{r}, ω, and t.

$$
\begin{equation*}
p_{r} \equiv \frac{\partial L}{\partial \dot{r}}=\frac{\partial}{\partial \dot{r}}\left(\frac{1}{2} m \dot{r}^{2}\right) \Rightarrow p_{r}=m \dot{r} \tag{1.3}
\end{equation*}
$$

1.4 Hamiltonian

The Hamiltonian in general can be defined as

$$
\begin{equation*}
H\left(q_{k}, p_{k}, t\right)=\sum_{j} p_{j} \dot{q}_{j}-L\left(q_{k}, \dot{q}_{k}, t\right) \tag{1.4}
\end{equation*}
$$

where the Hamiltonian must be written as a function of just the dependent dynamical variables q_{k}, p_{k}, and t. There must be no \dot{q}_{k} dependence in H. So we are assuming that \dot{q}_{k} can be written as a function of q_{k}, p_{k}, and t, in order to make this transformation.

In our case $H\left(r, p_{r}\right)=p_{r} \dot{r}-L(r, \dot{r})$. In terms of r, p_{r}, m, and ω, find the Hamiltonian, $H\left(r, p_{r}, t\right)$ for this system.

$\downarrow \quad 1.4$ solution

From this definition of H we get

$$
\begin{equation*}
H=p_{r} \dot{r}-\left(\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \omega^{2}\right)=p_{r}\left(\frac{p_{r}}{m}\right)-\frac{1}{2} m\left(\frac{p_{r}}{m}\right)^{2}-\frac{1}{2} m r^{2} \omega^{2} \quad \Rightarrow \quad H\left(r, p_{r}\right)=\frac{p_{r}^{2}}{2 m}-\frac{1}{2} m r^{2} \omega^{2} \tag{1.5}
\end{equation*}
$$

1.5 Hamilton's Equations of Motion

In Lagrangian dynamics, for each generalized position, $q_{i},(i=1,2, \ldots s)$ there is an equation of motion that is a secondorder ordinary differential equation. In Hamiltonian Dynamics, for each corresponding second-order differential equation of Lagrangian dynamics there are two first-order ordinary differential equations, one of the generalized position, q_{i}, and one for the corresponding canonical momentum, $p_{q_{i}} \equiv p_{i}$. These Hamiltonian equations of motion are gotten from the Hamiltonian like so

$$
\begin{equation*}
\dot{q}_{i}=\frac{\partial H}{\partial p_{q_{i}}} \quad \text { and } \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}} \tag{1.6}
\end{equation*}
$$

Use the Hamiltonian that you just calculated and equations 1.6 to find the equations of motion for r and p_{r}, and show that these equations of motion for r and p_{r} are equivalent to the equation of motion from section 1.2.

1.5 solution

$$
\begin{equation*}
\dot{r}=\frac{\partial H}{\partial p_{r}}=\frac{p_{r}}{m} \quad \Rightarrow \quad \dot{r}=\frac{p_{r}}{m} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{p}_{r}=-\frac{\partial H}{\partial r}=-\left(-m r \omega^{2}\right) \Rightarrow \quad \dot{p}_{r}=m r \omega^{2} \tag{1.8}
\end{equation*}
$$

From equation 1.7 and equation 1.8

$$
\begin{equation*}
\ddot{r}=\frac{1}{m} \dot{p_{r}}=\frac{1}{m}\left(m r \omega^{2}\right)=r \omega^{2} \quad \Rightarrow \quad \ddot{r}=r \omega^{2} \tag{1.9}
\end{equation*}
$$

which is equation 1.2. So the equations of motion from Lagrangian dynamics and Hamiltonian Dynamics are equivalent.

1.6 Energy vs Hamiltonian

In terms of r, p_{r}, m, ω, and t, (a) find the difference between the total energy E and the Hamiltonian H for this system $(E-H)$. (b) Is H constant in time? (c) Is E constant in time? Note that $E=T=L$. Explain you results.

$$
\begin{align*}
& \text { (1.6 solution } \\
& E-H=\left(\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \omega^{2}\right)-\left(\frac{p_{r}^{2}}{2 m}-\frac{1}{2} m r^{2} \omega^{2}\right)=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \omega^{2}-\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \omega^{2}=m r^{2} \omega^{2} \\
& \Rightarrow(\mathbf{a}) E-H=m r^{2} \omega^{2} . \tag{1.10}\\
& \frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{p_{r}^{2}}{2 m}-\frac{1}{2} m r^{2} \omega^{2}\right)=\frac{p_{r}}{m} \dot{p}_{r}-m \omega^{2} r \dot{r}=\frac{p_{r}}{m}\left(m r \omega^{2}\right)-m \omega^{2} r\left(\frac{p_{r}}{m}\right)=0, \tag{1.11}
\end{align*}
$$

where we have used the equations of motion for $\dot{p}_{r}=m r \omega^{2}$ and $\dot{r}=\frac{p_{r}}{m}$. So (b) H is constant.

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \omega^{2}\right)=\frac{p_{r}}{m} \dot{p}_{r}+m \omega^{2} r \dot{r}=2 r p_{r} \omega^{2}, \tag{1.12}
\end{equation*}
$$

So (c) E is not constant.

