1 Bead on a Spinning Wire

This walks you through the problem.

A bead, with mass m, slides without friction on a long straight wire. The wire is spinning about one end at a constant angular speed ω. Let r be the position of the bead on the wire as measured from the point of rotation of the wire. There is no gravity. All the motion is in a plane.

1.1 Lagrangian

In terms of r, \dot{r}, m, ω, and t, write an expression for the Lagrangian $L(r, \dot{r}, t)$ for this system. Note that $U=0$.

1.2 Lagrange's Equation of Motion

Using your Lagrangian, find the equation of motion for r.

1.3 Canonical Conjugate Momentum

In general, the canonical momentum that is conjugate (paired) to generalized position q_{i} is $p_{q_{i}} \equiv p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}$.
The canonical momentum that is conjugate to r is $p_{r} \equiv \frac{\partial L}{\partial r}$. Find the canonical momentum that is conjugate to r as a function of r, \dot{r}, ω, and t.

1.4 Hamiltonian

The Hamiltonian in general can be defined as

$$
\begin{equation*}
H\left(q_{k}, p_{k}, t\right)=\sum_{j} p_{j} \dot{q}_{j}-L\left(q_{k}, \dot{q}_{k}, t\right), \tag{1.1}
\end{equation*}
$$

where the Hamiltonian must be written as a function of just the dependent dynamical variables q_{k}, p_{k}, and t. There must be no \dot{q}_{k} dependence in H. So we are assuming that \dot{q}_{k} can be written as a function of q_{k}, p_{k}, and t, in order to make this transformation.

In our case $H\left(r, p_{r}\right)=p_{r} \dot{r}-L(r, \dot{r})$. In terms of r, p_{r}, m, and ω, find the Hamiltonian, $H\left(r, p_{r}, t\right)$ for this system.

1.5 Hamilton's Equations of Motion

In Lagrangian dynamics, for each generalized position, $q_{i},(i=1,2, \ldots s)$ there is an equation of motion that is a secondorder ordinary differential equation. In Hamiltonian Dynamics, for each corresponding second-order differential equation of Lagrangian dynamics there are two first-order ordinary differential equations, one of the generalized position, q_{i}, and one for the corresponding canonical momentum, $p_{q_{i}} \equiv p_{i}$. These Hamiltonian equations of motion are gotten from the Hamiltonian like so

$$
\begin{equation*}
\dot{q}_{i}=\frac{\partial H}{\partial p_{q_{i}}} \quad \text { and } \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}} \tag{1.2}
\end{equation*}
$$

Use the Hamiltonian that you just calculated and equations 1.2 to find the equations of motion for r and p_{r}, and show that these equations of motion for r and p_{r} are equivalent to the equation of motion from section 1.2.

1.6 Energy vs Hamiltonian

In terms of r, p_{r}, m, ω, and t, (a) find the difference between the total energy E and the Hamiltonian H for this system $(E-H)$. (b) Is H constant in time? (c) Is E constant in time? Note that $E=T=L$. Explain you results.

