1 Shrinking Pendulum

A simple plane pendulum consists of a mass m attached to a massless string of length l. The suspension point of the pendulum remains fixed as the length, l, is shortened at a constant rate α , as shown above. The pendulum has a length l_0 at time t = 0. In this problem we'll find the equations of motion for the pendulum using the Lagrangian and the Hamiltonian method.

1.1 Lagrangian

In terms of $\theta \dot{\theta}$, m, α , l_0 , and t, write an expression for the Lagrangian, $L\left(\theta, \dot{\theta}, t\right)$, for this system.

1.2 Lagrange's Equations of Motion

Using your Lagrangian and Largrange's equatons, find the differential equation of motion for θ .

1.3 Canonical Conjugate Momentum

Find the canonical momentum that is conjugate (paired) to θ . That is, find $p_{\theta} \equiv \frac{\partial L}{\partial \dot{\theta}}$, as a function of $\theta \dot{\theta}$, m, α , l_0 , and t.

1.4 Hamiltonian

In terms of θ , p_{θ} , m, α , l_0 , and t, write the Hamiltonian, $H(\theta, p_{\theta}, t)$ for this system.

1.5 Hamilton's Equations of Motion

Find the Hamilton's equations of motion for θ and p_{θ} , and show that these equations of motion for θ and p_{θ} are equivalent to the equations of motion from subsection 1.2.

1.6 Energy vs Hamiltonian

In terms of m, α, l_0 , and t, find the difference between the total energy, T + U, and the Hamiltonian for this system.