HWI18: Central-Forces, Phys3355, Fall 2005, with solution 1

1 Uniform Gravitational Field

The idea of changing dynamical variables in order to split a Lagrangian into independent pieces can be applied to systems
with noncentral-forces too.

Consider two particles, one with mass m; and position given by 71, and the other with mass ms and position given
by 72, with both subject to a uniform constant gravitational field § and interacting with each other with potential energy
U-(|71 — 72]). (a) Write the Lagrangian for this system using coordinates 71 and 72, L(71, 72, ¥1,72). (b) Make the change
of variables from 7, ™ to 7, ﬁ, where

P =y, B m1T + maors

(1.1)

mi + meo

and show that the transformed Lagrangian can be split into two parts like so
L = Lewm(R, R) + L, (7, 7). (1.2)

Identify Ler, and Ly,. You may want to define, i, the reduced mass as

mimeso
= — 1.3
K mi + mo ( )

(¢) Using equation 1.2, explain how the dynamics of R and 7 are independent of each other.

* | 1.0 solution | *
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From inverting equations 1.1 and differentiating with respect to time we have

ma o mi N ma mi

—7, o =R— ——7, m=R+——7, and m=R— ——
mi + meo mi + mo mi + meo mi 4+ mo

1
—
=
t
=

7 =R+
Replacing 77, 75 with R, 7 in the Lagrangian L gives
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where

mims

H ml—l—mg'

So equation 1.6 becomes

L= % (m1 + m2) (§)2 n %u (F)2 “U(A) + (m1 +m2) G- R (1.8)

= [y (8 + s e ]+ [ ()" - )]

So if
L= Len(R,B) + Lu(7,7), (1.9)
then
L5 1 1 2 .
Low(R, R) = 5 (my +m2) (R) +(my+m2)F- R
and
L1 g }
Lu(7,7) = 5 (7) = U(17) (1.10)

(¢) This is pretty obvious, but there goes. We can write Lagrange’s equation for a given generalized coordinate ¢; and a
Lagrangian L = Ly + Lo as

0 d 0
90 (L1+L2)+&8_qi(

Ly +Ly) =0. (1.11)

So if Ls does not depend on ¢; or ¢; then equation 1.11 becomes

0 d o

ey ST
dq; L6 dt 0¢;

L =0, (1.12)
and so Lo does not have any effect on the dynamics of ¢;. So in general the the dynamics of variables in a Lagrangian
are not effected by terms in the Lagrangian that do not contain the variable. So in general if terms in a Lagrangian are
independent of other terms in a the Lagrangian, and visa versa, then you have dynamical systems that are independent
of each other. In our case the dynamics of 7 is independent of R and visa versa.

{ }

2 Orbit of a Free Particle

It was shown in your text, Thornton and Marion (equation 8.21), that the orbital path r(#) can be found from the ordinary
differential equation

dz /1 1 ur?
i _—-_" F 2.1
d62 (T‘) + r 12 (), (21)
where [ is the constant angular momentum, p = 721_:’:32 is the reduced mass of the two particles, and F(r) is the force.

Find the orbital path, r(6), when there is no force, F'(r) = 0. What is the common name of the curve of this orbital path?

* | 2.0 solution | *
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dez \ r

2
d_<l)+1:o ~ |1 o cos0+ Cysingl. (2.2)
T

To more easily see what this polar plot, r(6), is, we can look at it in Cartesian coordinates where x = rcos6, and
y = rsinf. Writing equation 2.3 in terms of x, y, and r gives

1
;201%4-02% = 1=Cx+ Cayl, (2.3)

which is easy to identify as the equation of | a straight line |, as expected.

3 Find a Force from an Orbit

Find the central force, F(r), that allows a particle to move in a spiral orbit given by r = k2, where k is a constant.

* | 3.0 solution | *

From equation 2.1

N A B O W R Y -
o ur2dez \r wr2 e pr? de k63 ur? ko2 ’
12 1 1 12 1 1
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1? [(6k 1
= [P0 =——(F+3)| (3.3)

4 Time to Collide

Two particles are attracted to each other by gravity. They are in circular orbits about each other. The period of the
orbital motion is 7. If the two particles are suddenly stopped in their orbits and allowed to be pulled straight toward each

other by their gravitational attraction, show that they will collide after a time of 4%/5.

* | 4.0 solution | *

For a circular orbit in polar coordinates (r,0) r = const = b, and so is 0. We define § = w. Balancing force and
centripetal acceleration for both particles as there go around the center of mass gives

mim m

mirw? =G 22 LI ry = ng—;, (4.1)
and

mo (b—rl)wQ:Gmlm2 = b-—n :G%, (4.2)

b2
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where m, and mo are the masses of the two particles, b is the distance between the two particles, and r; is the distance
from the center of mass to particle 1. Adding equations 4.1 and 4.2 gives

Gmlmg 2

G
w?2h? (m1 +ms) Jw2b? Jw? 42y

Gmims  GmimaTt

(4.3)

where we used wr = 27 in the last step. We release the two particles from rest at a distance of b apart. The equation of
motion for r can be written using conservation of energy with the initial » value of b giving

Gmims Gmima 1 .4 1 dr
Ui+T,=U;s+Ty = - = - + ot = dt=— ;
f f b r 2“ V2Gmims \/1 _%

where we picked the minus sign since % is less than zero when the particles move toward each other. Setting ¢ to the

time for colliding gives

I / __n / b e (4.4)
V2Gmims Jr=p \/l _1 V2Gmimy Jr—y [fo—r  V2Gmamg Ji—g VO—1 '
T b br
With the change of variables 22 = r/b, 2bz do = dr
o / Vaz?2bzdr  pbv2b / (4.5)
2Gm1m2 Vb—bz2  /Gmima V1-— a:2 .

For the integral we have
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Combining this with equation 4.5 and 4.3 gives
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