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1 Uniform Gravitational Field

The idea of changing dynamical variables in order to split a Lagrangian into independent pieces can be applied to systems
with noncentral-forces too.

Consider two particles, one with mass m1 and position given by ~r1, and the other with mass m2 and position given
by ~r2, with both subject to a uniform constant gravitational field ~g and interacting with each other with potential energy
Ur(|~r1 − ~r2|). (a) Write the Lagrangian for this system using coordinates ~r1 and ~r2, L(~r1, ~r2, ~̇r1, ~̇r2). (b) Make the change

of variables from ~r1, ~r2 to ~r, ~R, where

~r = ~r1 − ~r2 , ~R =
m1~r1 + m2~r2

m1 + m2
, (1.1)

and show that the transformed Lagrangian can be split into two parts like so

L = Lcm(~R, ~̇R) + Lµ(~r, ~̇r) . (1.2)

Identify Lcm and Lµ. You may want to define, µ, the reduced mass as

µ =
m1m2

m1 + m2
. (1.3)

(c) Using equation 1.2, explain how the dynamics of ~R and ~r are independent of each other.

? ?
1.0 solution

L = T − U =
1

2
m1

(

~̇r1

)2

+
1

2
m2

(

~̇r2

)2

− Ur(|~r1 − ~r2|) − (−m1~g · ~r1) − (−m2~g · ~r2)

⇒ (a) L(~r1, ~r2, ~̇r1, ~̇r2) =
1

2
m1

(

~̇r1

)2

+
1

2
m2

(

~̇r2

)2

− Ur(|~r1 − ~r2|) + m1~g · ~r1 + m2~g · ~r2 (1.4)

From inverting equations 1.1 and differentiating with respect to time we have

~r1 = ~R +
m2

m1 + m2
~r , ~r2 = ~R − m1

m1 + m2
~r , ~̇r1 = ~̇R +

m2

m1 + m2
~̇r , and ~̇r2 = ~̇R − m1

m1 + m2
~̇r . (1.5)

Replacing ~r1, ~r2 with ~R, ~r in the Lagrangian L gives

L =
1

2
m1

(

~̇R +
m2

m1 + m2
~̇r

)2

+
1

2
m2

(

~̇R − m1

m1 + m2
~̇r

)2

−Ur(|~r|)+m1~g ·
(

~R +
m2

m1 + m2
~r

)

+m2~g ·
(

~R − m1

m1 + m2
~r

)

= 1
2m1

(

~̇R
)2

+ 1
2

m1m2

2

(m1+m2)2

(

~̇r
)2

+ m1m2

m1+m2

(

~̇R · ~̇r
)

+

1
2m2

(

~̇R
)2

+ 1
2

m2

1
m2

(m1+m2)2

(

~̇r
)2

− m1m2

m1+m2

(

~̇R · ~̇r
)

−

Ur(|~r|) + m1~g · ~R + m2~g · ~R + m1m2

m1+m2

~g · ~r − m1m2

m1+m2

~g · ~r

=
1

2
(m1 + m2)

(

~̇R
)2

+
1

2

m1m
2
2 + m2

1m2

(m1 + m2)
2

(

~̇r
)2

− Ur(|~r|) + (m1 + m2)~g · ~R . (1.6)

Digression:

1

2

m1m
2
2 + m2

1m2

(m1 + m2)
2

(

~̇r
)2

=
1

2

(m1 + m2) m1m2

(m1 + m2)
2

(

~̇r
)2

=
1

2

m1m2

m1 + m2

(

~̇r
)2

=
1

2
µ
(

~̇r
)2

, (1.7)
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where

µ ≡ m1m2

m1 + m2
.

So equation 1.6 becomes

L =
1

2
(m1 + m2)

(

~̇R
)2

+
1

2
µ
(

~̇r
)2

− Ur(|~r|) + (m1 + m2)~g · ~R (1.8)

=

[

1

2
(m1 + m2)

(

~̇R
)2

+ (m1 + m2)~g · ~R

]

+

[

1

2
µ
(

~̇r
)2

− Ur(|~r|)
]

.

So if

L = Lcm(~R, ~̇R) + Lµ(~r, ~̇r) , (1.9)

then

Lcm(~R, ~̇R) =
1

2
(m1 + m2)

(

~̇R
)2

+ (m1 + m2)~g · ~R

and

Lµ(~r, ~̇r) =
1

2
µ
(

~̇r
)2

− Ur(|~r|) (1.10)

(c) This is pretty obvious, but there goes. We can write Lagrange’s equation for a given generalized coordinate qi and a
Lagrangian L = L1 + L2 as

∂

∂qi

(L1 + L2) +
d

dt

∂

∂q̇i

(L1 + L2) = 0 . (1.11)

So if L2 does not depend on qi or q̇i then equation 1.11 becomes

∂

∂qi

L1 +
d

dt

∂

∂q̇i

L1 = 0 , (1.12)

and so L2 does not have any effect on the dynamics of qi. So in general the the dynamics of variables in a Lagrangian
are not effected by terms in the Lagrangian that do not contain the variable. So in general if terms in a Lagrangian are
independent of other terms in a the Lagrangian, and visa versa, then you have dynamical systems that are independent
of each other. In our case the dynamics of ~r is independent of ~R and visa versa.

6 6

2 Orbit of a Free Particle

It was shown in your text, Thornton and Marion (equation 8.21), that the orbital path r(θ) can be found from the ordinary
differential equation

d2

dθ2

(

1

r

)

+
1

r
= −µr2

l2
F (r) , (2.1)

where l is the constant angular momentum, µ = m1m2

m1+m2

is the reduced mass of the two particles, and F (r) is the force.
Find the orbital path, r(θ), when there is no force, F (r) = 0. What is the common name of the curve of this orbital path?

? ?
2.0 solution
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d2

dθ2

(

1

r

)

+
1

r
= 0 ⇒ 1

r
= C1 cos θ + C2 sin θ . (2.2)

To more easily see what this polar plot, r(θ), is, we can look at it in Cartesian coordinates where x = r cos θ, and
y = r sin θ. Writing equation 2.3 in terms of x, y, and r gives

1

r
= C1

x

r
+ C2

y

r
⇒ 1 = C1x + C2y , (2.3)

which is easy to identify as the equation of a straight line , as expected.

6 6

3 Find a Force from an Orbit

Find the central force, F (r), that allows a particle to move in a spiral orbit given by r = kθ2, where k is a constant.

? ?
3.0 solution

From equation 2.1

F (r) = − l2

µr2

d2

dθ2

(

1

r

)

− l2

µr2

1

r
= − l2

µr2

d

dθ

(

−2
1

kθ3

)

− l2

µr2

1

kθ2
(3.1)

= − l2

µr2

(

6
1

kθ4

)

− l2

µr2

1

kθ2
= − l2

µr2

(

6
1

k
(

r
k

)2

)

− l2

µr2

1

k r
k

(3.2)

⇒ F (r) = − l2

µ

(

6k

r4
+

1

r3

)

. (3.3)

6 6

4 Time to Collide

Two particles are attracted to each other by gravity. They are in circular orbits about each other. The period of the
orbital motion is τ . If the two particles are suddenly stopped in their orbits and allowed to be pulled straight toward each
other by their gravitational attraction, show that they will collide after a time of τ

4
√

2
.

? ?
4.0 solution

For a circular orbit in polar coordinates (r, θ) r = const = b, and so is θ̇. We define θ̇ ≡ ω. Balancing force and
centripetal acceleration for both particles as there go around the center of mass gives

m1r1ω
2 = G

m1m2

b2
⇒ r1 = G

m2

ω2b2
, (4.1)

and

m2 (b − r1) ω2 = G
m1m2

b2
⇒ b − r1 = G

m1

ω2b2
, (4.2)



HW18: Central-Forces, Phys3355, Fall 2005, with solution 4

where m1 and m2 are the masses of the two particles, b is the distance between the two particles, and r1 is the distance
from the center of mass to particle 1. Adding equations 4.1 and 4.2 gives

b =
G

ω2b2
(m1 + m2) ⇒ b =

Gm1m2

µω2b2
⇒ b3 =

Gm1m2

µω2
=

Gm1m2τ
2

4π2µ
, (4.3)

where we used ωτ = 2π in the last step. We release the two particles from rest at a distance of b apart. The equation of
motion for r can be written using conservation of energy with the initial r value of b giving

Ui + Ti = Uf + Tf ⇒ −Gm1m2

b
= −Gm1m2

r
+

1

2
µṙ2 ⇒ dt = − µ√

2Gm1m2

dr
√

1
r
− 1

b

,

where we picked the minus sign since dr
dt

is less than zero when the particles move toward each other. Setting t to the
time for colliding gives

⇒ t = − µ√
2Gm1m2

∫ 0

r=b

dr
√

1
r
− 1

b

= − µ√
2Gm1m2

∫ 0

r=b

dr
√

b−r
b r

=
µ
√

b√
2Gm1m2

∫ b

r=0

√
r dr√
b − r

. (4.4)

With the change of variables x2 = r/b, 2bx dx = dr

t =
µ
√

b√
2Gm1m2

∫ 1

x=0

√
ax2 2bx dx√

b − bx2
=

µb
√

2b√
Gm1m2

∫ 1

x=0

x2dx√
1 − x2

. (4.5)

For the integral we have

∫ 1

x=0

x2dx√
1− x2

=

(

−x

2

√

1 − x2 +
1

2
sin−1 x

)∣

∣

∣

∣

1

x=0

=
π

4
.

Combining this with equation 4.5 and 4.3 gives

t =
µ
√

2b
3

2

√
Gm1m2

π

4
=

√
2µ
√

Gm1m2τ2

4π2µ√
Gm1m2

π

4
⇒ t =

τ

4
√

2
. (4.6)
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