$1 r(\theta)$ - Orbital Path for Another Force

A particle of mass m moves with angular momentum l and with total energy E about a fixed center with a force

$$
\begin{equation*}
F(r)=-\frac{k}{r^{2}}+\frac{\lambda}{r^{3}} \tag{1.1}
\end{equation*}
$$

where k and λ are greater than zero, and r is the distance from the particle to the center. (a) Show that the equation for the orbit, $r(\theta)$, may have the form

$$
\begin{equation*}
\frac{\alpha}{r}=1+\epsilon \cos (\beta \theta) \tag{1.2}
\end{equation*}
$$

finding the constants α, ϵ, and β in terms of the given quantities m, k, λ, l, and E. Assume that the potential energies are zero at $r=\infty$ in defining the total energy, E. (b) For what values of β is the orbit closed?

1.0 solution

(a) I'll show all the detail here, but you will likely only need a subset of this by using the results of the Kepler problem or other short-cuts.

$$
\begin{align*}
& \mathrm{d} \theta=\frac{\mathrm{d} \theta}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} r} \mathrm{~d} r=\frac{\dot{\theta}}{\dot{r}} \mathrm{~d} r \tag{1.3}\\
& U(r)=-\int\left(-\frac{k}{r^{2}}+\frac{\lambda}{r^{3}}\right) \mathrm{d} r=-\frac{k}{r}+\frac{\lambda}{2 r^{2}}, \tag{1.4}
\end{align*}
$$

where we set $U(\infty)=0$. From conservation of energy and angular momentum, $l=m r^{2} \dot{\theta}$,

$$
\begin{align*}
& E=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2}-\frac{k}{r}+\frac{\lambda}{2 r^{2}}=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2}\left(\frac{l^{2}}{m^{2} r^{4}}\right)-\frac{k}{r}+\frac{\lambda}{2 r^{2}}=\frac{1}{2} m \dot{r}^{2}+\frac{l^{2}}{2 m r^{2}}-\frac{k}{r}+\frac{\lambda}{2 r^{2}} \\
& \Rightarrow E=\frac{1}{2} m \dot{r}^{2}+\left(\frac{l^{2}}{2 m}+\frac{\lambda}{2}\right) \frac{1}{r^{2}}-\frac{k}{r} \Rightarrow \dot{r}= \pm \sqrt{\frac{2}{m}\left[E-\left(\frac{l^{2}}{2 m}+\frac{\lambda}{2}\right) \frac{1}{r^{2}}-\frac{k}{r}\right]} \tag{1.5}
\end{align*}
$$

This with equation 1.3 gives

$$
\begin{equation*}
\Rightarrow \quad \mathrm{d} \theta= \pm \frac{\frac{l}{m r^{2}} \mathrm{~d} r}{\sqrt{\frac{2}{m}\left[E-\left(\frac{l^{2}}{2 m}+\frac{\lambda}{2}\right) \frac{1}{r^{2}}+\frac{k}{r}\right]}}= \pm \frac{l}{\sqrt{2 m}} \frac{\frac{\mathrm{~d} r}{r^{2}}}{\sqrt{E-\left(\frac{l^{2}}{2 m}+\frac{\lambda}{2}\right) \frac{1}{r^{2}}+\frac{k}{r}}} \tag{1.6}
\end{equation*}
$$

With the change of variables $u=\frac{1}{r}, \frac{\mathrm{~d} r}{r^{2}}=-\mathrm{d} u$, we get

$$
\begin{equation*}
\mathrm{d} \theta=\mp \frac{l}{\sqrt{2 m}} \frac{\mathrm{~d} u}{\sqrt{E+k u-\left(\frac{l^{2}}{2 m}+\frac{\lambda}{2}\right) u^{2}}} . \tag{1.7}
\end{equation*}
$$

We complete the square of the term

$$
\left(\frac{l^{2}}{2 m}+\frac{\lambda}{2}\right) u^{2}-k u
$$

giving

$$
\begin{equation*}
\mathrm{d} \theta=\mp \frac{l}{\sqrt{2 m}} \frac{\mathrm{~d} u}{\sqrt{\left(E+\frac{k^{2}}{2 \frac{l^{2}}{m}+2 \lambda}\right)-\left(\sqrt{\frac{l^{2}}{2 m}+\frac{\lambda}{2}} u-\frac{k}{\sqrt{\frac{2 l^{2}}{m}+2 \lambda}}\right)^{2}}} . \tag{1.8}
\end{equation*}
$$

Change variables to

$$
\begin{align*}
& y=\sqrt{\frac{l^{2}}{2 m}+\frac{\lambda}{2}} u-\frac{k}{\sqrt{\frac{2 l^{2}}{m}+2 \lambda}} \text { so } \mathrm{d} y=\sqrt{\frac{l^{2}}{2 m}+\frac{\lambda}{2}} \mathrm{~d} u \tag{1.9}\\
& \Rightarrow \quad \theta=\mp \frac{1}{\sqrt{\frac{l^{2}}{2 m}+\frac{\lambda}{2}}} \frac{l}{\sqrt{2 m}} \int \frac{\mathrm{~d} y}{\sqrt{\left[\left(E+\frac{k^{2}}{2 \frac{l^{2}}{m}+2 \lambda}\right)-y^{2}\right]}}=\mp \frac{1}{\sqrt{\frac{l^{2}}{2 m}+\frac{\lambda}{2}}} \frac{l}{\sqrt{2 m}} \cos ^{-1}\left(\frac{y}{\sqrt{E+\frac{k^{2}}{2 \frac{l^{2}}{m}+2 \lambda}}}\right), \tag{1.10}
\end{align*}
$$

where we have set the integration constant to zero, so that $\theta=0$ will have a minimum r value.

$$
\begin{align*}
& \Rightarrow \quad \cos \left(\sqrt{\frac{1}{2 m}+\frac{\lambda}{2 l^{2}}} \sqrt{2 m} \theta\right)=\frac{\sqrt{\frac{l^{2}}{2 m}+\frac{\lambda}{2}} u-\frac{k}{\sqrt{\frac{2 l^{2}}{m}+2 \lambda}}}{\sqrt{E+\frac{k^{2}}{2 \frac{l^{2}}{m}+2 \lambda}}} . \\
& \Rightarrow \quad \frac{k}{\sqrt{\frac{2 l^{2}}{m}+2 \lambda}}+\sqrt{E+\frac{k^{2}}{2 \frac{l^{2}}{m}+2 \lambda}} \cos \left(\sqrt{1+\frac{m \lambda}{l^{2}}} \theta\right)=\sqrt{\frac{l^{2}}{2 m}+\frac{\lambda}{2}} u, \\
& \Rightarrow \quad \frac{\frac{l^{2}+m \lambda}{m k}}{r}=1+\frac{\sqrt{\frac{2 l^{2}}{m}+2 \lambda}}{k} \sqrt{E+\frac{k^{2}}{2 \frac{l^{2}}{m}+2 \lambda}} \cos \left(\sqrt{1+\frac{m \lambda}{l^{2}}} \theta\right) \\
& \Rightarrow \quad \frac{\frac{l^{2}+m \lambda}{m k}}{r}=1+\left[\sqrt{\frac{2 E\left(l^{2}+m \lambda\right)}{k^{2}}+1}\right] \cos \left(\sqrt{1+\frac{m \lambda}{l^{2}}} \theta\right) \tag{1.11}
\end{align*}
$$

So

$$
\begin{equation*}
\alpha \equiv \frac{l^{2}+m \lambda}{m k}, \quad \beta \equiv \sqrt{1+\frac{m \lambda}{l^{2}}} \quad \text { and } \quad \epsilon \equiv \sqrt{\frac{2 E\left(l^{2}+m \lambda\right)}{k^{2}}+1}, \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\alpha}{r}=1+\epsilon \cos (\beta \theta) \tag{1.13}
\end{equation*}
$$

(b) In order for there to be a closed orbit the phase in cosine term, $\beta \theta$, must be $n 2 \pi$ when $\theta=m 2 \pi$ where m and n are integers, and the orbit will close after m revolutions. Therefore, in order for there to be a closed orbit

$$
\begin{equation*}
\beta(m 2 \pi)=n 2 \pi \quad \Rightarrow \quad \beta=\frac{n}{m}=\text { rational number } \Rightarrow \sqrt{1+\frac{m \lambda}{l^{2}}}=\text { rational number } \tag{1.14}
\end{equation*}
$$

