HW19: Central-Forces, Phys3355, Fall 2005, with solution 1

1 r(f) — Orbital Path for Another Force

A particle of mass m moves with angular momentum [ and with total energy E about a fixed center with a force

k A

(1.1)

where k and A are greater than zero, and r is the distance from the particle to the center. (a) Show that the equation
for the orbit, 7(#), may have the form

% =1+ ecos(p0), (1.2)

finding the constants «, €, and 3 in terms of the given quantities m, k, A, [, and E. Assume that the potential energies
are zero at r = oo in defining the total energy, E. (b) For what values of 3 is the orbit closed?

* | 1.0 solution | *

(a) T'll show all the detail here, but you will likely only need a subset of this by using the results of the Kepler problem
or other short-cuts.
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This with equation 1.3 gives
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With the change of variables u = %, % = —du, we get
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We complete the square of the term
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Change variables to
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where we have set the integration constant to zero, so that § = 0 will have a minimum 7 value.
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(b) In order for there to be a closed orbit the phase in cosine term , 56, must be n27 when § = m27 where m and n

are integers, and the orbit will close after m revolutions. Therefore, in order for there to be a closed orbit

A
B(m2r)=n2r = (= " _ rational number = 1+ 7?_2 = rational number .
m

(1.14)




