$1 r(\theta)$ - Orbital Path for Another Force

A particle of mass m moves with angular momentum l and with total energy E about a fixed center with a force

$$
\begin{equation*}
F(r)=-\frac{k}{r^{2}}+\frac{\lambda}{r^{3}} \tag{1.1}
\end{equation*}
$$

where k and λ are greater than zero, and r is the distance from the particle to the center. (a) Show that the equation for the orbit, $r(\theta)$, may have the form

$$
\begin{equation*}
\frac{\alpha}{r}=1+\epsilon \cos (\beta \theta) \tag{1.2}
\end{equation*}
$$

finding the constants α, ϵ, and β in terms of the given quantities m, k, λ, l, and E. Assume that the potential energies are zero at $r=\infty$ in defining the total energy, E. (b) For what values of β is the orbit closed?

