1 $r(\theta)$ – Orbital Path for Another Force

A particle of mass m moves with angular momentum l and with total energy E about a fixed center with a force

$$F(r) = -\frac{k}{r^2} + \frac{\lambda}{r^3} \tag{1.1}$$

where k and λ are greater than zero, and r is the distance from the particle to the center. (a) Show that the equation for the orbit, $r(\theta)$, may have the form

$$\frac{\alpha}{r} = 1 + \epsilon \cos(\beta\theta), \qquad (1.2)$$

finding the constants α , ϵ , and β in terms of the given quantities m, k, λ, l , and E. Assume that the potential energies are zero at $r = \infty$ in defining the total energy, E. (b) For what values of β is the orbit closed?