1 Two Particles Collide

A particle of mass m_{1} elastically collides with a particle of mass m_{2} which was at rest (in the lab frame). Find the maximum fraction of the kinetic energy loss for m_{1},

$$
\begin{equation*}
\left.\frac{T_{0}-T_{1}}{T_{0}}\right|_{\max } \tag{1.1}
\end{equation*}
$$

with respect to the deflected angles (in the lab frame). Describe the trajectories in the collision (in the lab frame).
Hints: You may maximize with respect to either deflected angle, ψ or ζ, since they are interdependent. Use results from the text.
$\uparrow \quad 1.0$ solution

$$
\begin{equation*}
\frac{T_{0}-T_{1}}{T_{0}}=1-\frac{T_{1}}{T_{0}} \tag{1.2}
\end{equation*}
$$

Thorton and Marion equation 9.88 is

$$
\frac{T_{2}}{T_{0}}=1-\frac{T_{1}}{T_{0}}=\frac{4 m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}} \cos ^{2} \zeta, \quad \zeta \leq \frac{\pi}{2}
$$

So we will maximize this with respect to ζ. The ζ dependence has just a $\cos ^{2} \zeta$ which has a maximum at $\zeta=0$. So

$$
\begin{equation*}
\left.\frac{T_{0}-T_{1}}{T_{0}}\right|_{\max }=\frac{4 m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}} \tag{1.3}
\end{equation*}
$$

With the deflected angle of $m_{2} \zeta=0$ the deflected angle of m_{1} will be $\psi=0$ or π, because, from conservation of momentum, it cannot have any momentum component that is transverse to the motion of m_{2}. So the trajectories in the collision in the lab frame look like

Before collision:

After collision:

