1 Small Angular Deviation from True Vertical

1.1 General Angular Deviation from True Vertical

Show that the small angular deflection of a plumb line from a radially vertical line is approximately

$$
\begin{equation*}
\theta \approx \frac{R \omega^{2} \sin \lambda \cos \lambda}{g-R \omega^{2} \cos ^{2} \lambda} \tag{1.1}
\end{equation*}
$$

where R is the radius of the earth, ω is the angular frequency of rotation of the earth, g is the acceleration due to gravity at the surface of the earth, and λ is the angle of latitude (which is zero at the equator).

Using the right hand rule to find the centrifugal acceleration we get

From the figure above

$$
\begin{equation*}
\vec{g}_{\mathrm{eff}}=\left(R \omega^{2} \cos ^{2} \lambda-g\right) \hat{y}-R \omega^{2} \sin \lambda \cos \lambda \hat{x} \tag{1.2}
\end{equation*}
$$

So

$$
\begin{equation*}
\tan \theta=\frac{R \omega^{2} \sin \lambda \cos \lambda}{g-R \omega^{2} \cos ^{2} \lambda} \tag{1.3}
\end{equation*}
$$

So for small θ

$$
\begin{equation*}
\theta \approx \frac{R \omega^{2} \sin \lambda \cos \lambda}{g-R \omega^{2} \cos ^{2} \lambda} \tag{1.4}
\end{equation*}
$$

\uparrow

1.2 Maximum Angular Deviation from True Vertical

What is the maximum deflection of a plumb line measured in degrees? (Maximize by varying λ.) Use $R=6.4 \times 10^{6} \mathrm{~m}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Hint: Keep in mind what numbers are small.

We can farther simplify 1.4 using $R \omega^{2} \ll g$ giving

$$
\begin{equation*}
\theta \approx \frac{R \omega^{2}}{g} \sin \lambda \cos \lambda=\frac{R \omega^{2}}{2 g} \sin 2 \lambda \tag{1.5}
\end{equation*}
$$

which has a maximum when

$$
\begin{equation*}
2 \lambda=\frac{\pi}{2} \quad \Rightarrow \quad \lambda=\frac{\pi}{4} . \tag{1.6}
\end{equation*}
$$

So

$$
\begin{equation*}
\theta_{\max } \approx \frac{R \omega^{2}}{2 g}=\frac{6.4 \times 10^{6} \mathrm{~m}\left(\frac{2 \pi}{24 \times 3600 \mathrm{~s}}\right)^{2}}{2 \times 9.8 \mathrm{~m} / \mathrm{s}^{2}} \frac{180^{\circ}}{2 \pi \mathrm{rad}} \Rightarrow \theta_{\max } \approx 0.099^{\circ} \tag{1.7}
\end{equation*}
$$

