1 Small Angular Deviation from True Vertical

1.1 General Angular Deviation from True Vertical

Show that the small angular deflection of a plumb line from a radially vertical line is approximately

$$
\begin{equation*}
\theta \approx \frac{R \omega^{2} \sin \lambda \cos \lambda}{g-R \omega^{2} \cos ^{2} \lambda} \tag{1.1}
\end{equation*}
$$

where R is the radius of the earth, ω is the angular frequency of rotation of the earth, g is the acceleration due to gravity at the surface of the earth, and λ is the angle of latitude (which is zero at the equator).

1.2 Maximum Angular Deviation from True Vertical

What is the maximum deflection of a plumb line measured in degrees? (Maximize by varying λ.) Use $R=6.4 \times 10^{6} \mathrm{~m}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Hint: Keep in mind what numbers are small.

