1 Effect of the Coriolis Force on an Artillery Projectile

1.1 Lateral Deflection

A projectile is fired due east with an angle of inclination to the horizontal of α and initial speed v_{0}. This takes place on the northern hemisphere at a latitude of λ. Show that the southward (lateral) deflection of the projectile can be approximated as

$$
\begin{equation*}
d=\frac{4 v_{0}^{3}}{g^{2}} \omega \sin \lambda \sin ^{2} \alpha \cos \alpha \tag{1.1}
\end{equation*}
$$

where g is the acceleration due to gravity near the surface of the earth, and ω is the angular frequency of rotation of the earth. Neglect air resistance.

The equations of motion for a free fall object with mass m and with the Coriolis forces can be expressed as

$$
\begin{equation*}
m \ddot{\vec{r}}=-m g \hat{z}-2 m \vec{\omega} \times \dot{\vec{r}} \quad \Rightarrow \quad \ddot{\vec{r}}=-g \hat{z}-2 \vec{\omega} \times \dot{\vec{r}} \tag{1.2}
\end{equation*}
$$

Because we have faster motion in the $z-y$ plane, we can ignore all the components of the Coriolis force except for forces in the x-direction, and we have the usual free fall equations of motion for the y and z directions, giving us

$$
\begin{align*}
& \ddot{x}=2 \omega \dot{y} \sin \lambda \tag{1.3}\\
& \dot{y}=v_{0} \cos \alpha \tag{1.4}\\
& \ddot{z}=-g . \tag{1.5}
\end{align*}
$$

Integrating equation 1.3 gives

$$
\begin{equation*}
\dot{x}(t)=2 \omega v_{0} \cos \alpha(\sin \lambda) t \quad \Rightarrow \quad x(t)=\omega v_{0} \cos \alpha(\sin \lambda) t^{2} \tag{1.6}
\end{equation*}
$$

where we have used the initial conditions that $\dot{x}(0)=0$ and $x(0)=0$. To get the deflection in the x-direction we get the the time of flight, t_{f}, from the z motion and plug that into $x(t)$ to give us $x\left(t_{f}\right)=d$. So integrating equation 1.5 gives

$$
\begin{equation*}
z(t)=v_{0}(\sin \alpha) t-\frac{1}{2} g t^{2} \tag{1.7}
\end{equation*}
$$

where we have used the initial conditions $\dot{z}(0)=v_{0} \sin \alpha$ and $z(0)=0$. We get the the time of flight, t_{f}, from setting $z\left(t_{f}\right)=0$ giving $t_{f}=\frac{2 v_{0} \sin \alpha}{g}$. So

$$
\begin{equation*}
d=x\left(t_{f}\right)=\omega v_{0} \cos \alpha(\sin \lambda)\left(\frac{2 v_{0} \sin \alpha}{g}\right)^{2} \Rightarrow d=\frac{4 v_{0}^{3}}{g^{2}} \omega \sin \lambda \sin ^{2} \alpha \cos \alpha \tag{1.8}
\end{equation*}
$$

\square

1.2 Is this an Important Effect for Artillery?

A howitzer has a muzzle velocity of about $680 \mathrm{~m} / \mathrm{s}$. If it fires a projectile due east with an angle of inclination of 45° and at a latitude of 45°, what will be the range, R, of this projectile and the southward deflection projectile, d ?
$\uparrow \quad 1.2$ solution
The range, R, is $y(t)$ with $t=t_{f}=\frac{2 v_{0} \sin \alpha}{g}$. Integrating equation 1.4 we get

$$
\begin{equation*}
y(t)=v_{0}(\cos \alpha) t \tag{1.9}
\end{equation*}
$$

where we used the initial condition $y(0)=0$. So

$$
\begin{equation*}
R=v_{0}(\cos \alpha)\left(\frac{2 v_{0} \sin \alpha}{g}\right)=\frac{2 v_{0}^{2} \cos \alpha \sin \alpha}{g}=\frac{2(680 \mathrm{~m} / \mathrm{s})^{2} 0.5}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \Rightarrow R \approx 47,180 \mathrm{~m} \tag{1.10}
\end{equation*}
$$

From equation 1.8

$$
\begin{equation*}
d=\frac{4 v_{0}^{3}}{g^{2}} \omega \sin \lambda \sin ^{2} \alpha \cos \alpha=\frac{4(680 \mathrm{~m} / \mathrm{s})^{3}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}} \frac{2 \pi}{24 \times 3600 s} \frac{1}{\sqrt{2}} \frac{1}{2} \frac{1}{\sqrt{2}} \quad \Rightarrow \quad d \approx 238 \mathrm{~m} \tag{1.11}
\end{equation*}
$$

Looks like it may be important.

2 Effect of the Coriolis Force on a Projectile Going Straight Up and Down

A projectile is fired straight up and reaches a maximum height of h. This takes place on the northern hemisphere at a latitude of λ. (a) Show that the projectile lands distance of approximately

$$
\begin{equation*}
d=\frac{8}{3} \sqrt{\frac{2 h^{3}}{g}} \omega \cos \lambda \tag{2.1}
\end{equation*}
$$

from where is was launched, where g is the acceleration due to gravity, and ω is the angular frequency of rotation of the earth. Neglect air resistance. (b) What is the direction that the projectile is deflected.

The equations of motion for a free fall object with mass m and with the Coriolis forces can be expressed as

$$
\begin{equation*}
m \ddot{\vec{r}}=-m g \hat{z}-2 m \vec{\omega} \times \dot{\vec{r}} \quad \Rightarrow \quad \ddot{\vec{r}}=-g \hat{z}-2 \vec{\omega} \times \dot{\vec{r}} \tag{2.2}
\end{equation*}
$$

Because we have faster motion in the $z-y$ plane, we can ignore all the components of the Coriolis force in the z-direction, and so we have the usual free fall equations of motion for the z directions, the considerable Coriolis force in the y-direction comes from a component of velocity in the z-direction, and there are no Coriolis force in the x-direction coming from a component of velocity in the z-direction, so we can ignore the x-direction motion. So we will use the equations of motion

$$
\begin{align*}
& \ddot{y}=-2 \omega \dot{z} \cos \lambda \tag{2.3}\\
& \ddot{z}=-g \tag{2.4}
\end{align*}
$$

Integrating equation 2.4 we get

$$
\begin{align*}
& \dot{z}(t)=v_{0}-g t \tag{2.5}\\
& z(t)=v_{0} t-\frac{1}{2} g t^{2} \tag{2.6}
\end{align*}
$$

where we have used the initial conditions $\dot{z}(0)=v_{0}$ and $z(0)=0$. Using \dot{z} from equation 2.5 we integrate equation 2.3

$$
\begin{equation*}
\dot{y}=-2 \omega \cos \lambda \int\left(v_{0}-g t\right) \mathrm{d} t=-2 \omega \cos \lambda\left(v_{0} t-\frac{1}{2} g t^{2}\right) \tag{2.7}
\end{equation*}
$$

where we have used the initial condition $\dot{y}(0)=0$. Integrating again we get

$$
\begin{equation*}
y=-2 \omega \cos \lambda \int\left(v_{0} t-\frac{1}{2} g t^{2}\right) \mathrm{d} t=-2 \omega \cos \lambda\left(\frac{1}{2} v_{0} t^{2}-\frac{1}{6} g t^{3}\right) \tag{2.8}
\end{equation*}
$$

where we have used the initial condition $y(0)=0$. The y-deflection of the projectile when it lands can be gotten by plugging in the time of flight into $y(t)$. We get the time of flight from solving $z\left(t=t_{f}\right)=0$ from equation 2.6 giving

$$
\begin{equation*}
t_{f}=\frac{2 v_{0}}{g} \tag{2.9}
\end{equation*}
$$

So the y-deflection of the projectile when is lands is

$$
\begin{align*}
& d=y\left(t_{f}\right)=-2 \omega \cos \lambda\left(\frac{1}{2} v_{0} t_{f}^{2}-\frac{1}{6} g t_{f}^{3}\right)=-2 \omega \cos \lambda\left[\frac{1}{2} v_{0}\left(\frac{2 v_{0}}{g}\right)^{2}-\frac{1}{6} g\left(\frac{2 v_{0}}{g}\right)^{3}\right] \\
& =-2 \omega \cos \lambda\left(2-\frac{4}{3}\right) \frac{v_{0}^{3}}{g^{2}}=-\frac{4}{3} \omega \cos \lambda \frac{v_{0}^{3}}{g^{2}} \tag{2.10}
\end{align*}
$$

We see that the projectile is deflected in the $-y$ direction, which is west. We can put this in terms of the height, h, that the height the projectile goes, which is the z-position when $\dot{z}\left(t=t_{t}\right)=0$. So from equation 2.5

$$
\begin{equation*}
t_{t}=\frac{v_{0}}{g} \tag{2.11}
\end{equation*}
$$

So

$$
\begin{equation*}
h=z\left(t_{t}\right)=v_{0} \frac{v_{0}}{g}-\frac{1}{2} g\left(\frac{v_{0}}{g}\right)^{2}=\frac{1}{2} \frac{v_{0}^{2}}{g} \quad \Rightarrow \quad v_{0}=\sqrt{2 g h} \tag{2.12}
\end{equation*}
$$

So from this and equation 2.10

$$
\begin{equation*}
\text { (a) } d=\frac{8}{3} \sqrt{\frac{2 h^{3}}{g}} \omega \cos \lambda \quad \text { (b) West }(-\hat{y}) \tag{2.13}
\end{equation*}
$$

