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1 Effect of the Coriolis Force on an Artillery Projectile

1.1 Lateral Deflection

A projectile is fired due east with an angle of inclination to the horizontal of α and initial speed v0. This takes place
on the northern hemisphere at a latitude of λ. Show that the southward (lateral) deflection of the projectile can be
approximated as

d =
4v3

0

g2
ω sinλ sin2 α cosα (1.1)

where g is the acceleration due to gravity near the surface of the earth, and ω is the angular frequency of rotation of the
earth. Neglect air resistance.
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1.1 solution
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The equations of motion for a free fall object with mass m and with the Coriolis forces can be expressed as

m~̈r = −mgẑ − 2m~ω × ~̇r ⇒ ~̈r = −gẑ − 2~ω × ~̇r . (1.2)

Because we have faster motion in the z-y plane, we can ignore all the components of the Coriolis force except for forces
in the x-direction, and we have the usual free fall equations of motion for the y and z directions, giving us

ẍ = 2ωẏ sin λ (1.3)

ẏ = v0 cosα (1.4)

z̈ = −g . (1.5)

Integrating equation 1.3 gives

ẋ(t) = 2ωv0 cosα (sin λ) t ⇒ x(t) = ωv0 cosα (sin λ) t2 (1.6)
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where we have used the initial conditions that ẋ(0) = 0 and x(0) = 0. To get the deflection in the x-direction we get the
the time of flight, tf , from the z motion and plug that into x(t) to give us x(tf ) = d. So integrating equation 1.5 gives

z(t) = v0 (sinα) t −
1

2
gt2 (1.7)

where we have used the initial conditions ż(0) = v0 sin α and z(0) = 0. We get the the time of flight, tf , from setting
z(tf ) = 0 giving tf = 2v0 sin α

g
. So

d = x(tf ) = ωv0 cosα (sinλ)

(

2v0 sin α

g

)2

⇒ d =
4v3

0

g2
ω sin λ sin2 α cosα . (1.8)
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1.2 Is this an Important Effect for Artillery?

A howitzer has a muzzle velocity of about 680 m/s. If it fires a projectile due east with an angle of inclination of 45◦ and
at a latitude of 45◦, what will be the range, R, of this projectile and the southward deflection projectile, d?

? ?
1.2 solution

The range, R, is y(t) with t = tf = 2v0 sin α
g

. Integrating equation 1.4 we get

y(t) = v0 (cosα) t (1.9)

where we used the initial condition y(0) = 0. So

R = v0 (cosα)

(

2v0 sin α

g

)

=
2v2

0
cosα sin α

g
=

2 (680 m/s)2 0.5

9.8 m/s2
⇒ R ≈ 47, 180 m . (1.10)

From equation 1.8

d =
4v3

0

g2
ω sinλ sin2 α cosα =

4 (680 m/s)
3

(9.8 m/s2)
2

2 π

24 × 3600 s

1
√

2

1

2

1
√

2
⇒ d ≈ 238 m . (1.11)

Looks like it may be important.
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2 Effect of the Coriolis Force on a Projectile Going Straight Up and Down

A projectile is fired straight up and reaches a maximum height of h. This takes place on the northern hemisphere at a
latitude of λ. (a) Show that the projectile lands distance of approximately

d =
8

3

√

2h3

g
ω cosλ (2.1)

from where is was launched, where g is the acceleration due to gravity, and ω is the angular frequency of rotation of the
earth. Neglect air resistance. (b) What is the direction that the projectile is deflected.

? ?
2.0 solution
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The equations of motion for a free fall object with mass m and with the Coriolis forces can be expressed as

m~̈r = −mgẑ − 2m~ω × ~̇r ⇒ ~̈r = −gẑ − 2~ω × ~̇r . (2.2)

Because we have faster motion in the z-y plane, we can ignore all the components of the Coriolis force in the z-direction,
and so we have the usual free fall equations of motion for the z directions, the considerable Coriolis force in the y-direction
comes from a component of velocity in the z-direction, and there are no Coriolis force in the x-direction coming from a
component of velocity in the z-direction, so we can ignore the x-direction motion. So we will use the equations of motion

ÿ = −2ω ż cosλ (2.3)

z̈ = −g . (2.4)

Integrating equation 2.4 we get

ż(t) = v0 − gt (2.5)

z(t) = v0t −
1

2
gt2 (2.6)

where we have used the initial conditions ż(0) = v0 and z(0) = 0. Using ż from equation 2.5 we integrate equation 2.3

ẏ = −2ω cosλ

∫

(v0 − gt) dt = −2ω cosλ

(

v0t −
1

2
gt2

)

(2.7)

where we have used the initial condition ẏ(0) = 0. Integrating again we get

y = −2ω cosλ

∫
(

v0t −
1

2
gt2

)

dt = −2ω cosλ

(

1

2
v0t

2 −
1

6
gt3

)

(2.8)

where we have used the initial condition y(0) = 0. The y-deflection of the projectile when it lands can be gotten by
plugging in the time of flight into y(t). We get the time of flight from solving z(t = tf ) = 0 from equation 2.6 giving

tf =
2v0

g
. (2.9)

So the y-deflection of the projectile when is lands is

d = y(tf ) = −2ω cosλ

(

1

2
v0t

2

f −
1

6
gt3f

)

= −2ω cosλ

[

1

2
v0

(

2v0

g

)2

−
1

6
g

(

2v0

g

)3
]

= −2ω cosλ

(

2 −
4

3

)

v3

0

g2
= −

4

3
ω cosλ

v3

0

g2
. (2.10)

We see that the projectile is deflected in the −y direction, which is west. We can put this in terms of the height, h, that
the height the projectile goes, which is the z-position when ż(t = tt) = 0. So from equation 2.5

tt =
v0

g
. (2.11)

So

h = z(tt) = v0

v0

g
−

1

2
g

(

v0

g

)2

=
1

2

v2

0

g
⇒ v0 =

√

2 g h . (2.12)

So from this and equation 2.10

(a) d =
8

3

√

2h3

g
ω cosλ (b) West (−ŷ) . (2.13)
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