1 Effect of the Coriolis Force on an Artillery Projectile

1.1 Lateral Deflection

A projectile is fired due east with an angle of inclination to the horizontal of α and initial speed v_{0}. This takes place on the northern hemisphere at a latitude of λ. Show that the southward (lateral) deflection of the projectile can be approximated as

$$
\begin{equation*}
d=\frac{4 v_{0}^{3}}{g^{2}} \omega \sin \lambda \sin ^{2} \alpha \cos \alpha \tag{1.1}
\end{equation*}
$$

where g is the acceleration due to gravity near the surface of the earth, and ω is the angular frequency of rotation of the earth. Neglect air resistance.

1.2 Is this an Important Effect for Artillery?

A howitzer has a muzzle velocity of about $680 \mathrm{~m} / \mathrm{s}$. If it fires a projectile due east with an angle of inclination of 45° and at a latitude of 45°, what will be the range, R, of this projectile and the southward deflection projectile, d ?

2 Effect of the Coriolis Force on a Projectile Going Straight Up and Down

A projectile is fired straight up and reaches a maximum height of h. This takes place on the northern hemisphere at a latitude of λ. (a) Show that the projectile lands distance of approximately

$$
\begin{equation*}
d=\frac{8}{3} \sqrt{\frac{2 h^{3}}{g}} \omega \cos \lambda \tag{2.1}
\end{equation*}
$$

from where is was launched, where g is the acceleration due to gravity, and ω is the angular frequency of rotation of the earth. Neglect air resistance. (b) What is the direction that the projectile is deflected.

