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This does not cover all topics that could be on the final exam. Topics that are covered in the homework and quizzes
are possible topics that may be on the final exam. Recent course topics are not covered in this homework.

1 Blocks with Pulley

m

M

y

x

g

A block of mass M slides on the top of a table. The coefficient of static friction between the block and the table is
µs. The coefficient of kinetic friction between the block and the table is µk. The pulley is massless and frictionless. A
massless stretch-less string connects the sliding block to a hanging weight. The displacement of the block is given by x.
The displacement of the hanging weight is given by y.

1.1 Free Body Diagrams

Draw a free body diagram for the block and the hanging weight.

? ?
1.1 solution

yM

x
N

Mg

F T y

mg

T
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1.2 Minimum Weight Mass

What is the minimum (limiting) hanging weight mass, mmin, that will cause the sliding block to start to move. Answer
in terms of M , and µs.

? ?
1.2 solution

Applying Newton’s second law to the sliding block and the hanging weight gives
∑

M

FyM
= N − Mg = 0 ⇒ N = Mg (1.1)

∑

M

Fx = T −F = Mẍ (1.2)

∑

m

Fy = mg − T = mÿ . (1.3)

Since the string is massless and does not stretch we have the constraint equation

ẍ = ÿ . (1.4)
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Solving for ẍ from all of the above equations, while eliminating ÿ and T gives

(M + m) ẍ = mg −F . (1.5)

Since the block is not moving yet we use

F ≤ µsN . (1.6)

F will keep the block at rest until it reaches it’s maximum value of µsN = µsMg. So the when the block just starts to
move m will be the minimum needed mass, mmin.

mming −Fmax = 0 ⇒ mming − µsMg = 0 ⇒ mmin = µsM . (1.7)

6 6

1.3 Acceleration

When the block is moving, what is acceleration of the sliding block, ẍ, as a function of M , m, g, and µk.

? ?
1.3 solution

When the block is moving to the right

F = µkN = µkMg . (1.8)

With this and equation 1.5 we get

(M + m) ẍ = mg − µkMg ⇒ ẍ =
m − µkM

M + m
g . (1.9)

This assumes that the block is sliding to the right. When the block is moving to the left

F = −µkN ⇒ ẍ =
m + µkM

M + m
g . (1.10)

6 6

2 Power Into a Simple Harmonic Oscillator

A driven damped simple harmonic oscillator consists of a mass m, connected to a spring with spring constant k, and
linear damping constant b (Fdamping = −bẋ). A driving force acts on the mass with a force of F (t) = F0 cosωt along the
direction of the oscillation of mass.

2.1 Average Power In

In terms of the given parameters, find the average power 〈P 〉 (P = ~F · ~v) that the driving force applies to the oscillator
over one cycle of the oscillator, when the oscillator is in steady state motion.

? ?
2.1 solution
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The equation of motion for this driven oscillator can be written as

mẍ + bẋ + kx = F0 cosωt ⇒ ẍ + 2
b

2m
ẋ +

k

m
x =

F0

m
cosωt . (2.1)

From many texts we see that the steady state solution to this can be written as

x(t) = D cos (ωt − δ) (2.2)

D ≡
F0

m
√

(ω2
0 − ω2)

2
+ 4ω2β2

(2.3)

and

δ ≡ tan−1

(

2ωβ

ω2
0 − ω2

)

, (2.4)

where ω2
0 ≡ k

m
, β ≡ b

2m
. The power supplied by the driver to the oscillator at steady state is

P = (F0 cosωt) ẋ(t) = F0 cosωt [−ωD sin (ωt − δ)] ⇒ 〈P 〉 = −ωDF0

ω

2π

∫ ω

2π

t=0

cosωt sin (ωt − δ) dt

= −ωDF0

1

2π

∫ ω

2π

t=0

cosωt (sin ωt cos δ − cosωt sin δ) d (ωt)

= −ωDF0

(

0 −
1

2
sin δ

)

⇒ 〈P 〉 =
1

2
ωDF0 sin δ =

1

2
ωDF0 sin

[

tan−1

(

2ωβ

ω2
0 − ω2

)]

=
1

2
ωDF0

2ωβ
√

(ω2
0 − ω2)

2
+ 4ω2β2

= βω2F0

F0

m
√

(ω2
0 − ω2)

2
+ 4ω2β2

1
√

(ω2
0 − ω2)

2
+ 4ω2β2

=
b

2m
ω2 F 2

0

m

(ω2
0 − ω2)

2
+ 4ω2β2

⇒ 〈P 〉 =

bω2F 2

0

2m2

(

k
m

− ω2
)2

+ 4ω2β2
. (2.5)
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2.2 Power Resonance

Find, ωr, the value of the driving angular frequency, ω, that maximizes this average power, 〈P 〉.

? ?
2.2 solution

For 〈P 〉 to be a maximum

d

dω
〈P 〉

∣

∣

∣

∣

ω=ωr

= 0 ⇒

bωrF 2

0

m2

[

(

k
m

− ω2
r

)2
+ 4ω2

rβ
2
]

−
bω2

r
F 2

0

2m2

[

2
(

k
m

− ω2
r

)

(−2ωr) + 8ωrβ
2
]

[

(

k
m

− ω2
r

)2
+ 4ω2

rβ2

]2
= 0

⇒ ωr

[

(

k

m
− ω2

r

)2

+ 2ω2
r

(

k

m
− ω2

r

)

]

= 0 . (2.6)
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The root of interest is

ωr =

√

k

m
= ω0 , (2.7)

which is the angular frequency of the undriven, undamped oscillator.
Another condition that 〈P 〉 to be a maximum, at ω = ωr, is that

d2

dω2
〈P 〉

∣

∣

∣

∣

ω=ωr

< 0 . (2.8)

We have

d2

dω2
〈P 〉 =

bF 2
0

m2

d

dω











ω
(

k
m

− ω2
)2

+ 2ω3
(

k
m

− ω2
)

[

(

k
m

− ω2
)2

+ 4ω2β2

]2











=
bF 2

0

m2











[

(

k
m

− ω2
)2

+ ω2
(

k
m

− ω2
)

(−2ω) + 6ω2
(

k
m

− ω2
)

+ 2ω3 (−2ω)
] [

(

k
m

− ω2
)2

+ 4ω2β2
]2

[

(

k
m

− ω2
)2

+ 4ω2β2

]4

−

[

ω
(

k
m

− ω2
)2

+ 2ω3
(

k
m

− ω2
)

]

2
[

(

k
m

− ω2
)2

+ 4ω2β2
]

[

2
(

k
m

− ω2
)

(−2ω) + 8ωβ2
]

[

(

k
m

− ω2
)2

+ 4ω2β2

]4











. (2.9)

Setting ω = ωr =
√

k
m

gives

d2

dω2
〈P 〉

∣

∣

∣

∣

ω=ωr

=
bF 2

0

m2

(

−64ω16
r β4

(4ω2
rβ2)4

)

= −
bF 2

0

m2

(

16
k4

m4β4

)

(2.10)

which is less than zero, so ω = k
m

maximumizes 〈P 〉, the average power over a cycle.

6 6

3 Find a Force from an Orbit

Find the central force, F (r), that allows a particle to move in a spiral orbit given by r = kθ, where k is a constant.

? ?
3.0 solution

From Thornton and Marion (equation 8.21), the force, F (r), can be found from the ordinary differential equation

d2

dθ2

(

1

r

)

+
1

r
= −

µr2

l2
F (r) , (3.1)

where l is the constant angular momentum, and µ = m1m2

m1+m2
is the reduced mass of the two particles. So the force, F (r),

is

F (r) = −
l2

kµr2

[

d2

dθ2

(

1

θ

)

+
1

θ

]

= −
l2

kµr2

[

d

dθ

(

−
1

θ2

)

+
1

θ

]

= −
l2

kµr2

(

2
1

θ3
+

1

θ

)

= −
l2

kµr2

(

2
k3

r3
+

k

r

)

⇒ F (r) = −
l2

kµr2

(

2
k3

r3
+

k

r

)

⇒ F (r) ∝ −2
k2

r5
−

1

r3
(3.2)

and we need more information (like l and µ) to give the force that will act in a particular case.

6 6
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4 Rocking Chair

R
a

CM

θ

A rocking chair rolls (rocks) without slipping. The radius of the rocker is R. The total mass of the rocking chair is
M . The distance from the center of the rocker circle to the center-of-mass (CM) is a. The momentum-of-inertia of the
rocking chair about the center-of-mass is I . No one is sitting in the rocking chair.

4.1 Lagrangian

Find the Lagrangian L(θ, θ̇), where θ is the angle of rotation of the rocking chair measured from the equilibrium position.

? ?
4.1 solution

a
θ

x

y

~r

To calculate the kinetic energy T we will need (~̇r)2 which we get from ~r by looking at the above figure

~r = (−Rθ + a sin θ) x̂ + (R − a cos θ) ŷ ⇒ ~̇r =
(

−Rθ̇ + aθ̇ cos θ
)

x̂ +
(

aθ̇ sin θ
)

ŷ

⇒
(

~̇r
)2

= R2θ̇2 − 2aRθ̇2 cos θ + a2θ̇2 . (4.1)

So the Lagrangian L is

L = T − U = TCM + Trot − U (4.2)

where we have written the kinetic energy T , in terms of the kinetic energy due to the translation of the center-of-mass,
TCM, and the kinetic energy due to the rotation about the center-of-mass, Trot. Continuing,

L = TCM + Trot − U =
1

2
M
(

R2θ̇2 − 2aRθ̇2 cos θ + a2θ̇2
)

+
1

2
Iθ̇2 − (−Mga cosθ)

⇒ L(θ, θ̇) =
1

2
MR2θ̇2 +

1

2
Ma2θ̇2 − MaRθ̇2 cos θ +

1

2
Iθ̇2 + Mga cos θ . (4.3)

6 6
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4.2 Differential Equation of Motion for θ

Find the differential equation of motion for θ. You may answer in terms of θ̈, θ̇, θ, M , a, R, I , and g (the acceleration
due to gravity).

? ?
4.2 solution

∂L

∂θ
−

d

dt

∂L

∂θ̇
= 0 ⇒ MaRθ̇2 sin θ − Mga sin θ −

d

dt

(

MR2θ̇ + Ma2θ̇ + Iθ̇ − 2MaRθ̇ cos θ
)

⇒ MaRθ̇2 sin θ − Mga sin θ −
(

MR2θ̈ + Ma2θ̈ + Iθ̈ − 2MaRθ̈ cos θ + 2MaRθ̇2 sin θ
)

⇒
(

MR2 + Ma2 + I
)

θ̈ − 2MaRθ̈ cos θ = −MaRθ̇2 sin θ − Mga sin θ . (4.4)

6 6

4.3 Angular Frequency for Small Oscillations

Find the angular frequency, ω0, for small oscillations about θ = 0. You may answer in terms of M , a, R, I , and g (the
acceleration due to gravity).

? ?
4.3 solution

For small θ we approximate

sin θ ≈ θ and cos θ ≈ 1 . (4.5)

Using this with the equation of motion, 4.4, we get
(

MR2 + Ma2 + I
)

θ̈ − 2MaRθ̈ = −MaRθ̇2θ − Mgaθ . (4.6)

θ̇2θ will be of size of order θ3 and may be ignored. So by using that and simplifying equation 4.6 we have
[

M (R − a)2 + I
]

θ̈ = −Mgaθ ⇒ θ̈ = −
Mga

M (R − a)2 + I
θ (4.7)

which is the equation of motion for simple harmonic motion with the angular frequency

ω0 =

√

Mga

M (R − a)
2

+ I
. (4.8)

It may seem a little odd that for the limiting case when R = a and I = 0 that ω0 = ∞, but this makes some sense when
you consider that the velocity of the center of mass would be constrained to be zero at the equilibrium position θ = 0 if
R = a, from the geometry. So it’s not linearizable (simple harmonic) if R = a.

6 6

5 Springy Pendulum

θ

x

y

r

m

g
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The springy pendulum shown above has a rest spring length a, a spring constant k, and a bob mass of m. r is the
distance from the origin (pivot point) to the bob. Both r and θ can change in time.

5.1 Hamiltonian

Find the generalized momentums pr and pθ in terms of the generalized coordinates and velocities, and find the Hamiltonian
H(pr, r, pθ, θ) for this system.

? ?
5.1 solution

The Lagrangian is

L = T − U =
1

2
mṙ2 +

1

2
mr2θ̇2 −

1

2
k (r − a)

2
+ mgr cos θ (5.1)

The generalized momentum pr is

pr =
∂L

∂ṙ
= mṙ ⇒ pr = mṙ . (5.2)

The generalized momentum pθ is

pθ =
∂L

∂θ̇
= mr2θ̇ ⇒ pr = mr2θ̇ . (5.3)

With the above, the Hamiltonian is

H = pr ṙ + pθθ̇ − L = 2T − T + U = T + U =
1

2
mṙ2 +

1

2
mr2θ̇2 +

1

2
k (r − a)

2
− mgr cos θ

⇒ H =
ṗr

2

2m
+

ṗθ
2

2mr2
+

1

2
k (r − a)

2
− mgr cos θ . (5.4)

In this case we see that the Hamiltonian is equal to the total energy.

6 6

5.2 Differential Equations of Motion

Find the differential equations of motion for pr, pθ, r, and θ, in terms of ṗr, ṗθ, ṙ, θ̇, pr, pθ, r, θ, m, k, a, and g.

? ?
5.2 solution

ṗr = −
∂H

∂r
=

p2
θ

mr3
− kr + ka + mg cos θ , (5.5)

ṗθ = −
∂H

∂θ
= −mgr sin θ , (5.6)

ṙ =
∂H

∂pr

=
pr

m
, (5.7)

and

θ̇ =
∂H

∂pθ

=
pθ

mr2
. (5.8)
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So in summary

ṗr =
p2

θ

mr3 − kr + ka + mg cos θ

ṗθ = −mgr sin θ

ṙ = pr

m

θ̇ = pθ

mr2

. (5.9)

6 6

6 Inverse Rocket

A large abandoned space ship travels through space which is filled with uniformly distributed “space dust”, with mass
density ρ. The only forces on the space ship are from the dust that collects on the ship as it goes through the dust.
Consider the space dust to be at rest (not moving) before the ship hits it. Assume that all the dust that gets hit by the
ship sticks to the ship and effectively increases the mass of the ship, and slows down the ship. All the motion is in one
dimension.

6.1 Differential Equation

Let m be the mass of the ship at a given time t. Note that m is increasing in with t. Let v be the speed of ship at a given
time t. v is decreasing with t.

By using conservation of momentum (or some other equivalent to Newton’s 2nd law), find the “rocket-like” equation
that relates dv, dm, m, and v, and solve for v as a function of m.

? ?
6.1 solution

at time t

at time t + dt

v

m dm

v + dv

m dm

The system of interest is the ship and all the dust that it will hit and pick up. The figure above shows the ship at
time t and the ship at small time later, t+dt, when it picks up mass dm. All the other dust is not moving, or has already
been collected by the ship. We calculate the change in momentum for the two times, dp, giving

dp = p(t + dt) − p(t) = (m + dm) (v + dv) − mv = mv + mdv + vdm + dv dm − mv = mdv + vdm + dv dm . (6.1)

There external force of this system so dp = 0 and so

mdv + vdm = 0 (6.2)

where we drop the higher order (very small) dv dm term. We can solve for m in terms of v like so
∫

dv

v
= −

∫

dm

m
. (6.3)

We can use the condition that at some time m = m0 and v = v0 so that
∫ v

v′=v0

dv′

v′
= −

∫ m

m′=m0

dm′

m′
⇒ ln

v

v0

= − ln
m

m0

⇒ ln
v

v0

= ln
m0

m
⇒

v

v0

=
m0

m
⇒ mv = m0v0 . (6.4)
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6 6

6.2 Find dm

dt

A is the cross-sectional area of the ship that is passing (cutting) through the dust. Find dm
dt

as a function of v, ρ, and A

using the fact that the ship adds the mass of all the dust that the ship hits.

? ?
6.2 solution

As the ship moves at speed v

dm = ρ dV = ρAv dt ⇒
dm

dt
= ρAv . (6.5)

6 6

6.3 Solve for m(t) and v(t)

The initial ship speed (at time t = 0) is v0 and the initial ship mass is m0. Using this with previous results, solve for m(t)
and v(t) in terms of t, v0, m0, A and ρ.

? ?
6.3 solution

From above we have two dependent variables, m and v, and two equations of motion. From above, we can express
these equations of motion as the following set of two equations

mv = m0v0 and
dm

dt
= ρAv (6.6)

where we pick m0 and v0 to be the initial values of m and v. We can combine these two equations to get an equation for
just m giving

dm

dt
= ρA

m0v0

m
⇒ mdm = ρAm0v0dt ⇒

∫ m

m′=m0

m′dm′ = ρAm0v0

∫ t

t′=0

dt′

⇒
1

2

(

m2 − m2
0

)

= ρAm0v0t ⇒ m(t) =
√

m2
0 + 2ρAm0v0t . (6.7)

From this we can plug m(t) into the first equation in 6.6 giving

√

m2
0 + 2ρAm0v0t v = m0v0 ⇒ v(t) =

v0
√

1 + 2ρA v0

m0
t

. (6.8)

For those of you who must do things the hard way we can find a different differential equation for v(t), which has the
m dependence removed. We can start with equation 6.2 and expand the differentials as functions of time giving

mdv + vdm = 0 ⇒ m
dv

dt
dt + v

dm

dt
dt = 0 ⇒ m

dv

dt
+ v

dm

dt
= 0 ⇒ mv̇ + vṁ = 0 .

We can remove the ṁ with equation 6.5 and the m from equation 6.4 giving

(m0v0

v

)

v̇ + v (ρAv) = 0 ⇒ v̇ = −
ρA

m0v0

v3 (6.9)
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which can be solved to give the same result as equation 6.8.

6 6


