1 potential

A particle is constrained to move in one dimension, x, is acted on by a force which is derived for the potential energy $U(x) = ax + \frac{b}{2}x^2$, where the constants a and b are positive.

1.1 force

What is the force, f(x), from this potential as a function of x?

ł	1.1 solution	1
For force and potential in 1-D, x ,		

$$f(x) = -\frac{\mathrm{d}U(x)}{\mathrm{d}x} = -\frac{\mathrm{d}}{\mathrm{d}x}\left(ax + \frac{b}{2}x^2\right) = -a - bx.$$
(1.1)

 So

$$f(x) = -a - bx \,. \tag{1.2}$$

1.2 equilibrium *x* position

Find the equilibrium position, x_0 , the x position where the force is zero.

F			1.2 solution	+
So	$f(x_0) = 0 \qquad \Rightarrow \qquad 0 = -a - bx_0 = -a - bx_0$	⇒	$x_0 = -rac{a}{b}$	(1.3)
50	$x_0 = -\frac{a}{b}.$			(1.4)
ł				t

1.3 stability

Is this equilibrium position, x_0 , stable or unstable? Show why.

$$\frac{\mathrm{d}^2 U(x)}{\mathrm{d}x^2} = -\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \frac{\mathrm{d}}{\mathrm{d}x}(a+bx) = b \tag{1.5}$$

$$\frac{\mathrm{d}^2 U(x_0)}{\mathrm{d}x^2} = b \text{ which is greater than zero therefore } x_0 \text{ is a stable equilibrium position.}$$