1 potential

A particle is constrained to move in one dimension, x, is acted on by a force which is derived for the potential energy $U(x)=a x+\frac{b}{2} x^{2}$, where the constants a and b are positive.

1.1 force

What is the force, $f(x)$, from this potential as a function of x ?

1.1 solution

For force and potential in 1-D, x,

$$
\begin{equation*}
f(x)=-\frac{\mathrm{d} U(x)}{\mathrm{d} x}=-\frac{\mathrm{d}}{\mathrm{~d} x}\left(a x+\frac{b}{2} x^{2}\right)=-a-b x . \tag{1.1}
\end{equation*}
$$

So

$$
\begin{equation*}
f(x)=-a-b x \tag{1.2}
\end{equation*}
$$

4

1.2 equilibrium x position

Find the equilibrium position, x_{0}, the x position where the force is zero.
$\uparrow \quad 1.2$ solution

$$
\begin{equation*}
f\left(x_{0}\right)=0 \quad \Rightarrow \quad 0=-a-b x_{0} \quad \Rightarrow \quad x_{0}=-\frac{a}{b} \tag{1.3}
\end{equation*}
$$

So

$$
\begin{equation*}
x_{0}=-\frac{a}{b} . \tag{1.4}
\end{equation*}
$$

1.3 stability

Is this equilibrium position, x_{0}, stable or unstable? Show why.

$$
\frac{\mathrm{d}^{2} U(x)}{\mathrm{d} x^{2}}=-\frac{\mathrm{d}}{\mathrm{~d} x} f(x)=\frac{\mathrm{d}}{\mathrm{~d} x}(a+b x)=b
$$

$\frac{\mathrm{d}^{2} U\left(x_{0}\right)}{\mathrm{d} x^{2}}=b$ which is greater than zero therefore x_{0} is a stable equilibrium position.
4

