1 Hanging a Mass on a Spring

A weight, of mass $m=200 \mathrm{~g}$, is hung on a spring with unknown spring constant k. The mass is hung vertically on the spring so that gravity pulls on the mass too. The weight is released from a position where the spring is relaxed (not stretched or compressed). The weight is observed to move up and down with a period, τ, of 1.1 seconds.

Use $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. Assume that all given numbers are exact. Assume there is no damping in the motion. Express your answers to at least 3 significant figures.

1.1 Spring Constant

Given these measurements, determine the spring constant of the spring, k.

1.1 solution

We define ω_{0} to be the angular frequency of the motion, so $\omega_{0}=\frac{2 \pi}{\tau}$.

$$
\begin{aligned}
& \quad \quad \omega_{0}^{2}=\frac{k}{m} \Rightarrow\left(\frac{2 \pi}{\tau}\right)^{2}=\frac{k}{m} \quad \Rightarrow \quad k=\frac{4 \pi^{2} m}{\tau^{2}}=\frac{4 \pi^{2} 200 \mathrm{~g}\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)}{(1.1 \mathrm{~s})^{2}} \approx 6.52 \frac{\mathrm{~kg}}{\mathrm{~s}^{2}}=6.52 \frac{\mathrm{~N}}{\mathrm{~m}} . \\
& \text { So } k \approx 6.52 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{aligned}
$$

1.2 Maximum Speed

Given these measurements, determine the maximum speed of the weight, $\dot{x}_{\text {max }}$, as it oscillates up and down.

There are many ways to do this, here's at quick way: When the weight is first released the acceleration of the weight is at a maximum (in magnitude) over the period and has a value of g since the spring is not stretched. Since this is simple harmonic motion than this must be the amplitude of the acceleration, $\ddot{x}_{\max }=\omega_{0}^{2} A$, and the amplitude of the velocity must be $\dot{x}_{\max }=\omega_{0} A$. So we have

$$
\begin{equation*}
\dot{x}_{\max }=\omega_{0} A=\frac{A \omega_{0}^{2}}{\omega_{0}}=\frac{\ddot{x}_{\max }}{\omega_{0}}=\frac{g}{\omega_{0}}=g \frac{\tau}{2 \pi}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \frac{1.1 \mathrm{~s}}{2 \pi} \approx 1.72 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{1.2}
\end{equation*}
$$

and so $\dot{x}_{\text {max }} \approx 1.72 \frac{\mathrm{~m}}{\mathrm{~s}}$

1.3 on the Moon (10 pts extra credit)

Given the same spring, weight and initial conditions, what will be the measured period τ^{\prime}, and the the maximum speed of the weight $\dot{x}_{\text {max }}^{\prime}$, if this experiment is performed on the surface of the moon where the acceleration due to gravity is $\frac{g}{6}$. As before, the weight is released from rest at a position where there is no stretch in the spring.

1.3 solution

The period of the oscillation is only dependent on the m and k, and these parameters do not change on the surface of the moon. So $\tau^{\prime}=1.1 \mathrm{~s}$ as it is on the earth.
$\dot{x}_{\max }$ is the same as before in equation 1.2 , but with $\dot{x}_{\max }$ changed to $\dot{x}_{\max }^{\prime}$ and $g^{\prime}=\frac{g}{6}$. So with these changes to equation 1.2 we get

$$
\begin{equation*}
\dot{x}_{\max }^{\prime}=g^{\prime} \frac{\tau}{2 \pi}=\frac{g}{6} \frac{\tau}{2 \pi}=\frac{1}{6} 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \frac{1.1 \mathrm{~s}}{2 \pi} \approx 0.286 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{1.3}
\end{equation*}
$$

and so $\dot{x}_{\max }^{\prime} \approx 0.286 \frac{\mathrm{~m}}{\mathrm{~s}}$.

