1 Hanging a Mass on a Spring

A weight, of mass $m=200 \mathrm{~g}$, is hung on a spring with unknown spring constant k. The mass is hung vertically on the spring so that gravity pulls on the mass too. The weight is released from a position where the spring is relaxed (not stretched or compressed). The weight is observed to move up and down with a period, τ, of 1.1 seconds.

Use $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. Assume that all given numbers are exact. Assume there is no damping in the motion. Express your answers to at least 3 significant figures.

1.1 Spring Constant

Given these measurements, determine the spring constant of the spring, k.

1.2 Maximum Speed

Given these measurements, determine the maximum speed of the weight, $\dot{x}_{\max }$, as it oscillates up and down.

1.3 on the Moon (10 pts extra credit)

Given the same spring, weight and initial conditions, what will be the measured period τ^{\prime}, and the the maximum speed of the weight $\dot{x}_{\max }^{\prime}$, if this experiment is performed on the surface of the moon where the acceleration due to gravity is $\frac{g}{6}$. As before, the weight is released from rest at a position where there is no stretch in the spring.

