## 1 Toward the Moon

In this problem assume that there is no atmospheric friction, and use a static model for the earth and moon system. So this will be a pretty gross approximation. Use: the mass of the earth is $M_{E}$, the mass of the moon is $M_{m}$, and the orbit radius of the earth moon system as measured from earths center to the moons center is $R_{o}$.

## 1.1

Find the distance from the earths center toward the moon, $R_{b}$, where the force of gravity from the earth and the force of gravity from the moon on a small object balance (add to zero).

## 1.1 solution

The two gravitational forces balance giving

$$
\begin{equation*}
G \frac{m M_{E}}{R_{b}^{2}}=G \frac{m M_{m}}{\left(R_{o}-R_{b}\right)^{2}} \quad \Rightarrow \quad M_{E}\left(R_{o}-R_{b}\right)^{2}-M_{m} R_{b}^{2}=0 \quad \Rightarrow \quad\left(1-\frac{M_{m}}{M_{E}}\right) R_{b}^{2}-2 R_{o} R_{b}+R_{o}^{2}=0 \tag{1.1}
\end{equation*}
$$

Solving for $R_{b}$ gives

$$
\begin{equation*}
R_{b}=\frac{2 R_{o} \pm \sqrt{4 R_{o}^{2}-4\left(1-\frac{M_{m}}{M_{E}}\right) R_{o}^{2}}}{2\left(1-\frac{M_{m}}{M_{E}}\right)} \Rightarrow R_{b}=R_{o} \frac{\left(1 \pm \sqrt{\frac{M_{m}}{M_{E}}}\right)}{1-\frac{M_{m}}{M_{E}}} \tag{1.2}
\end{equation*}
$$

The solution that is between the earth and the moon is

$$
\begin{equation*}
R_{b}=R_{o} \frac{\left(1-\sqrt{\frac{M_{m}}{M_{E}}}\right)}{1-\frac{M_{m}}{M_{E}}} . \tag{1.3}
\end{equation*}
$$

Note that for the case when $M_{E}=M_{m}$, we get an indeterminate form $\left(\frac{0}{0}\right)$, so we must be careful taking this limit to show that we are half way between the two bodies when the forces balance.

