1 Stationary Integral

Find $y(x)$ such that the following integral is stationary,

$$
\begin{equation*}
J=\int_{x_{1}}^{x_{2}}\left(\frac{1}{2} y^{\prime 2}\right) \mathrm{d} x \tag{1.1}
\end{equation*}
$$

where $y^{\prime} \equiv \frac{\mathrm{d} y}{\mathrm{~d} x}$.
Hints: Do so by using the Euler equation,

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0 \tag{1.2}
\end{equation*}
$$

where $f\left(y, y^{\prime} ; x\right)=\frac{1}{2}{y^{\prime}}^{2}$. You do not have to determine the two constants of integration, just call them c_{1} and c_{2}. Don't bother interpreting them. Don't bother interpreting J or $y(x)$. This is just an exercise.

1.0 solution

For J to be stationary Euler's equation must be satisfied. So

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0 \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
f\left(y, y^{\prime} ; x\right)=\frac{1}{2} y^{\prime 2} \tag{1.4}
\end{equation*}
$$

we get

$$
\begin{equation*}
0-\frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{\prime}\right)=0 \quad \Rightarrow \quad y^{\prime}=c_{1} \quad \Rightarrow \quad \int \frac{\mathrm{~d} y}{\mathrm{~d} x} \mathrm{~d} x=\int c_{1} \mathrm{~d} x \quad \Rightarrow \quad y(x)=c_{1} x+c_{2} \tag{1.5}
\end{equation*}
$$

