1 Stationary Integral

Find y(x) such that the following integral is stationary,

$$J = \int_{x_1}^{x_2} \left(\frac{1}{2} {y'}^2\right) \,\mathrm{d}x,\tag{1.1}$$

where $y' \equiv \frac{\mathrm{d}y}{\mathrm{d}x}$.

Hints: Do so by using the Euler equation,

$$\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) = 0, \tag{1.2}$$

where $f(y, y'; x) = \frac{1}{2} y'^2$. You do not have to determine the two constants of integration, just call them c_1 and c_2 . Don't bother interpreting them. Don't bother interpreting J or y(x). This is just an exercise.

1.0 solution		
1.0 solution	10 14	
	I U solution	
	1.0 50101011	

For J to be stationary Euler's equation must be satisfied. So

$$\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) = 0, \tag{1.3}$$

where

$$f(y, y'; x) = \frac{1}{2} {y'}^2, \tag{1.4}$$

we get

$$0 - \frac{\mathrm{d}}{\mathrm{d}x}(y') = 0 \quad \Rightarrow \quad y' = c_1 \quad \Rightarrow \quad \int \frac{\mathrm{d}y}{\mathrm{d}x} \,\mathrm{d}x = \int c_1 \,\mathrm{d}x \quad \Rightarrow \quad y(x) = c_1 \,x + c_2 \tag{1.5}$$