1 Stationary Integral

Find $y(t)$ and $x(t)$ such that the following integral is stationary,

$$
\begin{equation*}
J=\int_{t_{1}}^{t_{2}}\left(\frac{1}{2} \dot{x}^{2}+\frac{1}{2} \dot{y}^{2}\right) \mathrm{d} t \tag{1.1}
\end{equation*}
$$

where $\dot{x} \equiv \frac{\mathrm{~d} x}{\mathrm{~d} t}$ and $\dot{y} \equiv \frac{\mathrm{~d} y}{\mathrm{~d} t}$.
Hint: Do so by using the Euler equations,

$$
\begin{equation*}
\frac{\partial f}{\partial x}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial f}{\partial \dot{x}}\right)=0 \quad \text { and } \quad \frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial f}{\partial \dot{y}}\right)=0 \tag{1.2}
\end{equation*}
$$

where $f(x, \dot{x}, y, \dot{y} ; t)=\frac{1}{2} \dot{x}^{2}+\frac{1}{2} \dot{y}^{2}$. You do not have to determine all the constants of integration.

	1.0 solution	

Plugging f into the Euler equations gives

$$
\begin{equation*}
0-\frac{\mathrm{d} \dot{x}}{\mathrm{~d} t}=0 \quad \text { and } \quad 0-\frac{\mathrm{d} \dot{y}}{\mathrm{~d} t}=0 \tag{1.3}
\end{equation*}
$$

which may be integrated giving

$$
\begin{equation*}
\dot{x}=c_{1} \quad \text { and } \quad \dot{y}=c_{2} \quad \Rightarrow \quad x=c_{1} t+c_{3} \quad \text { and } \quad y=c_{2} t+c_{4} \tag{1.4}
\end{equation*}
$$

where c_{1}, c_{2}, c_{3}, and c_{4} are constants of integration.

