1 Simple Harmonic Oscillator

A particle of mass m moves along that x direction under the influence of a force $f(x)=-k x$ and there is no other force.

1.1 Lagrangian

Find the Lagrangian, $L(x, \dot{x}) \equiv T-U$, in terms of m, k, x, and \dot{x}, for this particle.

where C is a constant of integration, that we will set to zero.

$$
\begin{align*}
& L=T-U=\frac{1}{2} m v^{2}-\frac{1}{2} k x^{2}=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2}, \tag{1.2}\\
& \Rightarrow \quad L(x, \dot{x})=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2} . \tag{1.3}
\end{align*}
$$

1.2 Equation of Motion

Apply Lagranges equations to this Lagrangian to get the equations of motion for this particle. Your answer should be like $\ddot{x}=$?.

1.2 solution

Lagranges equations for this system is

$$
\begin{equation*}
\frac{\partial L}{\partial x}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}}=0 \quad \Rightarrow \quad-k x-\frac{\mathrm{d}}{\mathrm{~d} t}(m \dot{x})=0 \quad \Rightarrow \quad m \ddot{x}=-k x \quad \Rightarrow \quad \ddot{x}=-\frac{k}{m} x \text {. } \tag{1.4}
\end{equation*}
$$

