1 Spinning a Mass on a Spring

A particle, of mass m, is connected to a spring, with spring constant k. The spring has a rest length a. One end of the spring is held fixed while the particle rotates around the fixed end at a constant angular frequency ω, as shown in the figure below. The spring stays straight and connected to the particle, spinning with it about the fixed end of the spring. Let r be the position of the particle measured from the point of rotation, so the Lagrangian will be a function of r, \dot{r}, and maybe t, time $(L(r, \dot{r}, t))$. Using the Lagrangian method, find the equation of motion for $r(\ddot{r}=$?).

	1.0 solution

$$
\begin{align*}
& L=T-U=\frac{1}{2} m v^{2}-\frac{1}{2} k(r-a)^{2}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-\frac{1}{2} k(r-a)^{2}=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\phi}^{2}-\frac{1}{2} k(r-a)^{2} \tag{1.1}\\
& =\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \omega^{2}-\frac{1}{2} k(r-a)^{2} . \tag{1.2}
\end{align*}
$$

Using Lagrange's equation

$$
\begin{align*}
& \frac{\partial L}{\partial r}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{r}} \Rightarrow m r \omega^{2}-k(r-a)-\frac{\mathrm{d}}{\mathrm{~d} t}(m \dot{r})=0 \quad \Rightarrow \quad m \ddot{r}=m r \omega^{2}-k(r-a) \tag{1.3}\\
& \Rightarrow \ddot{r}=-\left(\frac{k}{m}-\omega^{2}\right) r+\frac{k}{m} a \tag{1.4}
\end{align*}
$$

We get simple harmonic motion if $\frac{k}{m}>\omega^{2}$. If $\frac{k}{m}<\omega^{2}$ we get a broken spring $(r \rightarrow \infty$ as $t \rightarrow \infty)$.

