1 Atwood's Machine using a Lagrange Multiplier

An Atwood's machine machine is constructed with a fixed massless frictionless pulley, a stretch-less massless string, and two weights with masses m_{1} and m_{2}, as shown in the figure below. Use x_{1} and x_{2} as the positions of hanging weights as shown.

Find the acceleration of weight 1 (the weight with mass m_{1}) \ddot{x}_{1}, the acceleration of weight 2 (the weight with mass m_{2}) \ddot{x}_{2}, and T the tension in the string, by using Lagrange's equations and a Lagrange multiplier λ.

1.0 solution

The Lagrangian is

$$
\begin{align*}
& L=T-U=T_{1}+T_{2}-U_{1}-U_{2}=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}-m_{1} g\left(-x_{1}\right)-m_{2} g\left(-x_{2}\right) \\
& \Rightarrow \quad L\left(x_{1}, x_{2}, \dot{x}_{1}, \dot{x}_{2}\right)=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}+m_{1} g x_{1}+m_{2} g x_{2} \tag{1.1}
\end{align*}
$$

The equation of constraint is

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-l=0 \tag{1.2}
\end{equation*}
$$

where l is a constant. The set of equations of motion consist of this constraint equation, $f\left(x_{1}, x_{2}\right)$, and the two Lagrange equations

$$
\begin{equation*}
\frac{\partial L}{\partial x_{1}}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}_{1}}+\lambda(t) \frac{\partial f}{\partial x_{1}}=0 \quad \text { and } \quad \frac{\partial L}{\partial x_{2}}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}_{2}}+\lambda(t) \frac{\partial f}{\partial x_{2}}=0 \tag{1.3}
\end{equation*}
$$

where $\lambda(t)$ is the Lagrange multiplier, and so the generalized forces of constraint are

$$
\begin{equation*}
\mathcal{Q}_{1}=\lambda(t) \frac{\partial f}{\partial x_{1}} \quad \text { and } \quad \mathcal{Q}_{2}=\lambda(t) \frac{\partial f}{\partial x_{2}} \tag{1.4}
\end{equation*}
$$

\mathcal{Q}_{1} will be the generalized constraint force, associated the equation of constraint, that is along the x_{1} direction. Since the generalized coordinates are Cartesian the generalized constraint force \mathcal{Q}_{1} will be a regular force. So \mathcal{Q}_{1} will be minus the tension in the string. \mathcal{Q}_{2} will be the generalized constraint force, associated the equation of constraint, that is along the x_{2} direction. So \mathcal{Q}_{2} will be minus the tension in the string.

Plugging L and f into equations 1.3 gives

$$
\begin{equation*}
m_{1} g-\frac{\mathrm{d}}{\mathrm{~d} t}\left(m_{1} \dot{x}_{1}\right)+\lambda[1] \quad \Rightarrow \quad m_{1} \ddot{x}_{1}=m_{1} g+\lambda \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{2} g-\frac{\mathrm{d}}{\mathrm{~d} t}\left(m_{2} \dot{x}_{2}\right)+\lambda[1] \quad \Rightarrow \quad m_{2} \ddot{x}_{2}=m_{2} g+\lambda \tag{1.6}
\end{equation*}
$$

Differentiating the equation of constraint (equation 1.2) with respect to time (t) twice gives

$$
\begin{equation*}
\ddot{x}_{1}+\ddot{x}_{2}=0 . \tag{1.7}
\end{equation*}
$$

We have three equations, $1.5,1.5$, and 1.7 , and three unknowns $\ddot{x}_{1}, \ddot{x}_{2}$, and λ. Solving gives

The constraint force in the string is

$$
\begin{equation*}
\mathcal{Q}_{1}=\lambda(t) \frac{\partial f}{\partial x_{1}}=-\left(\frac{2 m_{1} m_{2}}{m_{1}+m_{2}} g\right)(1)=-\frac{2 m_{1} m_{2}}{m_{1}+m_{2}} g, \tag{1.9}
\end{equation*}
$$

which is also the same as \mathcal{Q}_{2}, which is minus the tension in the string. So

$$
\begin{equation*}
T=\frac{2 m_{1} m_{2}}{m_{1}+m_{2}} g \tag{1.10}
\end{equation*}
$$

