1 Simple Pendulum

A simple plane pendulum has a length l, bob mass m, and is in a uniform gravitational field, g. Use θ, the angle the pendulum swings from equilibrium, as the generalized coordinate. Find (a) the Lagrangian $L(\theta, \dot{\theta})$, (b) p_{θ}, the momentum conjugate to θ, as a function of m, g, l, θ and $\dot{\theta}, \mathbf{(c)}$ the Hamiltonian $H\left(\theta, p_{\theta}\right)$, (d) Hamilton's equation of motion for $p_{\theta}\left(\dot{p}_{\theta}=\right.$?), and (e) Hamilton's equation of motion for $\theta(\dot{\theta}=$?).

