1 Angular Momentum

Consider two particles, one with mass m_{1} and position given by \vec{r}_{1}, and the other with mass m_{2} and position given by $\vec{r}_{2} . \vec{r}_{1}$ and \vec{r}_{2} are both measured from the same coordinate system. The center of mass position of the two particles is,

$$
\begin{equation*}
\vec{R}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}} \tag{1.1}
\end{equation*}
$$

If we measure the positions \vec{r}_{1} and \vec{r}_{2} from the position of the center of mass then

$$
\begin{equation*}
0=m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2} \tag{1.2}
\end{equation*}
$$

The angular momentum of the two particles is

$$
\begin{equation*}
\vec{L}=m_{1} \vec{r}_{1} \times \dot{\vec{r}}_{1}+m_{2} \vec{r}_{2} \times \dot{\vec{r}}_{2} \tag{1.3}
\end{equation*}
$$

Show that the angular momentum of the two particles as measured about the center of mass position is given by

$$
\begin{equation*}
\vec{L}=\mu \vec{r} \times \dot{\vec{r}}, \quad \text { where } \quad \mu \equiv \frac{m_{1} m_{2}}{m_{1}+m_{2}}, \quad \text { and } \quad \vec{r} \equiv \vec{r}_{1}-\vec{r}_{2} \tag{1.4}
\end{equation*}
$$

\upharpoonright

1.0 solution

We find r_{1} and r_{2} in terms of r from

$$
\begin{equation*}
0=m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{r}=\vec{r}_{1}-\vec{r}_{2} \tag{1.6}
\end{equation*}
$$

giving

$$
\begin{equation*}
\vec{r}_{1}=\frac{m_{2}}{m_{1}+m_{2}} \vec{r}, \quad \vec{r}_{2}=-\frac{m_{1}}{m_{1}+m_{2}} \vec{r}, \quad \dot{\vec{r}}_{1}=\frac{m_{2}}{m_{1}+m_{2}} \dot{\vec{r}}, \quad \text { and } \quad \dot{\vec{r}}=-\frac{m_{1}}{m_{1}+m_{2}} \dot{\vec{r}} . \tag{1.7}
\end{equation*}
$$

Plugging this into $\vec{L}=m_{1} \vec{r}_{1} \times \dot{\vec{r}}_{1}+m_{2} \vec{r}_{2} \times \dot{\vec{r}}_{2}$ gives

$$
\begin{align*}
& \vec{L}=m_{1} \frac{m_{2}}{m_{1}+m_{2}} \vec{r} \times \frac{m_{2}}{m_{1}+m_{2}} \dot{\vec{r}}+m_{2} \frac{m_{1}}{m_{1}+m_{2}} \vec{r} \times \frac{m_{1}}{m_{1}+m_{2}} \dot{\vec{r}}=\left[m_{1} \frac{m_{2}^{2}}{\left(m_{1}+m_{2}\right)^{2}}+m_{2} \frac{m_{1}^{2}}{\left(m_{1}+m_{2}\right)^{2}}\right] \vec{r} \times \dot{\vec{r}} \\
& =\left[m_{1} m_{2} \frac{m_{2}+m_{1}}{\left(m_{1}+m_{2}\right)^{2}}\right] \vec{r} \times \dot{\vec{r}} \Rightarrow \vec{L}=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \vec{r} \times \dot{\vec{r}}=\mu \vec{r} \times \dot{\vec{r}} . \tag{1.8}
\end{align*}
$$

