1 Angular Momentum

Consider two particles, one with mass m_{1} and position given by \vec{r}_{1}, and the other with mass m_{2} and position given by $\vec{r}_{2} . \vec{r}_{1}$ and \vec{r}_{2} are both measured from the same coordinate system. The center of mass position of the two particles is,

$$
\begin{equation*}
\vec{R}=\frac{m_{1} \vec{r}_{1}+m_{2} \overrightarrow{r_{2}}}{m_{1}+m_{2}} \tag{1.1}
\end{equation*}
$$

If we measure the positions \vec{r}_{1} and \vec{r}_{2} from the position of the center of mass then

$$
\begin{equation*}
0=m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2} \tag{1.2}
\end{equation*}
$$

The angular momentum of the two particles is

$$
\begin{equation*}
\vec{L}=m_{1} \vec{r}_{1} \times \dot{\vec{r}}_{1}+m_{2} \overrightarrow{r_{2}} \times \dot{\vec{r}}_{2} \tag{1.3}
\end{equation*}
$$

Show that the angular momentum of the two particles as measured about the center of mass position is given by

$$
\begin{equation*}
\vec{L}=\mu \vec{r} \times \dot{\vec{r}}, \quad \text { where } \quad \mu \equiv \frac{m_{1} m_{2}}{m_{1}+m_{2}}, \quad \text { and } \quad \vec{r} \equiv \vec{r}_{1}-\vec{r}_{2} \tag{1.4}
\end{equation*}
$$

